1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371
|
#' Quickly perform pseudo-bulk DE analyses
#'
#' A wrapper function around \pkg{edgeR}'s quasi-likelihood methods
#' to conveniently perform differential expression analyses on pseudo-bulk profiles,
#' allowing detection of cell type-specific changes between conditions in replicated studies.
#'
#' @param x A numeric matrix of counts where rows are genes and columns are pseudo-bulk profiles.
#' Alternatively, a SummarizedExperiment object containing such a matrix in its assays.
#' @param col.data A data.frame or \linkS4class{DataFrame} containing metadata for each column of \code{x}.
#' @param label A vector of factor of length equal to \code{ncol(x)},
#' specifying the cluster or cell type assignment for each column of \code{x}.
#' @param design A formula to be used to construct a design matrix from variables in \code{col.data}.
#' Alternatively, a function that accepts a data.frame with the same fields as \code{col.data} and returns a design matrix.
#' @param condition A vector or factor of length equal to \code{ncol(x)},
#' specifying the experimental condition for each column of \code{x}.
#' Only used for abundance-based filtering of genes.
#' @param coef String or character vector containing the coefficients to drop from the design matrix to form the null hypothesis.
#' Can also be an integer scalar or vector specifying the indices of the relevant columns.
#' @param contrast Numeric vector or matrix containing the contrast of interest.
#' Alternatively, a character vector to be passed to \code{\link{makeContrasts}} to create this numeric vector/matrix.
#' If specified, this takes precedence over \code{coef}.
#' @param lfc Numeric scalar specifying the log-fold change threshold to use in \code{\link{glmTreat}} or \code{\link{treat}}.
#' @param assay.type String or integer scalar specifying the assay to use from \code{x}.
#' @param include.intermediates Logical scalar indicating whether the intermediate \pkg{edgeR} objects should be returned.
#' @param row.data A \linkS4class{DataFrame} containing additional row metadata for each gene in \code{x},
#' to be included in each of the output DataFrames.
#' This should have the same number and order of rows as \code{x}.
#' @param ... For the generic, additional arguments to pass to individual methods.
#'
#' For the SummarizedExperiment method, additional arguments to pass to the ANY method.
#' @param method String specifying the DE analysis framework to use.
#' @param robust Logical scalar indicating whether robust empirical Bayes shrinkage should be performed.
#' @param qualities Logical scalar indicating whether quality weighting should be used when \code{method="voom"},
#' see \code{\link{voomWithQualityWeights}} for more details.
#' @param sorted Logical scalar indicating whether the output tables should be sorted by p-value.
#' @param sample Deprecated.
#'
#' @return
#' A \linkS4class{List} with one \linkS4class{DataFrame} of DE results per unique (non-failed) level of \code{cluster}.
#' This contains columns from \code{\link{topTags}} if \code{method="edgeR"} or \code{\link{topTable}} if \code{method="voom"}.
#' All DataFrames have row names equal to \code{rownames(x)}.
#'
#' The \code{\link{metadata}} of the List contains \code{failed},
#' a character vector with the names of the labels for which the comparison could not be performed - see Details.
#'
#' The \code{\link{metadata}} of the individual DataFrames contains \code{design}, the final design matrix for that label.
#' If \code{include.intermediates}, the \code{\link{metadata}} will also contain
#' \code{y}, the DGEList used for the analysis; and \code{fit}, the DGEGLM object after GLM fitting.
#'
#' @details
#' In replicated multi-condition scRNA-seq experiments,
#' we often have clusters comprised of cells from different samples of different experimental conditions.
#' It is often desirable to check for differential expression between conditions within each cluster,
#' allowing us to identify cell-type-specific responses to the experimental perturbation.
#'
#' Given a set of pseudo-bulk profiles (usually generated by \code{\link{sumCountsAcrossCells}}),
#' this function loops over the labels and uses \pkg{edgeR} or \code{\link{voom}} to detect DE genes between conditions.
#' The DE analysis for each label is largely the same as a standard analysis for bulk RNA-seq data,
#' using \code{design} and \code{coef} or \code{contrast} as described in the \pkg{edgeR} or \pkg{limma} user guides.
#' Generally speaking, \pkg{edgeR} handles low counts better via its count-based model
#' but \code{method="voom"} supports variable sample precision when \code{quality=TRUE}.
#'
#' Performing pseudo-bulk DGE enables us to reuse well-tested methods developed for bulk RNA-seq data analysis.
#' Each pseudo-bulk profile can be treated as an \emph{in silico} mimicry of a real bulk RNA-seq sample
#' (though in practice, it tends to be much more variable due to the lower numbers of cells).
#' This also models the relevant variability between experimental replicates (i.e., across samples)
#' rather than that between cells in the same sample, without resorting to expensive mixed-effects models.
#'
#' The DE analysis for each label is independent of that for any other label.
#' This aims to minimize problems due to differences in abundance and variance between labels,
#' at the cost of losing the ability to share information across labels.
#'
#' In some cases, it will be impossible to perform a DE analysis for a label.
#' The most obvious reason is if there are no residual degrees of freedom;
#' other explanations include impossible contrasts or a failure to construct an appropriate design matrix
#' (e.g., if a cell type only exists in one condition).
#'
#' Note that we assume that \code{x} has already been filtered to remove unstable pseudo-bulk profiles generated from few cells.
#'
#' @section Comments on abundance filtering:
#' For each label, abundance filtering is performed using \code{\link{filterByExpr}} prior to further analysis.
#' Genes that are filtered out will still show up in the DataFrame for that label, but with all statistics set to \code{NA}.
#' As this is done separately for each label, a different set of genes may be filtered out for each label,
#' which is largely to be expected if there is any label-specific expression.
#'
#' By default, the minimum group size for \code{filterByExpr} is determined using the design matrix.
#' However, this may not be optimal if the design matrix contains additional terms (e.g., blocking factors)
#' in which case it is not easy to determine the minimum size of the groups relevant to the comparison of interest.
#' To overcome this, users can specify \code{condition.field} to specify the group to which each sample belongs,
#' which is used by \code{filterByExpr} to obtain a more appropriate minimum group size.
#'
#' @author Aaron Lun
#'
#' @references
#' Tung P-Y et al. (2017).
#' Batch effects and the effective design of single-cell gene expression studies.
#' \emph{Sci. Rep.} 7, 39921
#'
#' Lun ATL and Marioni JC (2017).
#' Overcoming confounding plate effects in differential expression analyses of single-cell RNA-seq data.
#' \emph{Biostatistics} 18, 451-464
#'
#' Crowell HL et al. (2019).
#' On the discovery of population-specific state transitions from multi-sample multi-condition single-cell RNA sequencing data.
#' \emph{biorXiv}
#'
#' @examples
#' set.seed(10000)
#' library(scuttle)
#' sce <- mockSCE(ncells=1000)
#' sce$samples <- gl(8, 125) # Pretending we have 8 samples.
#'
#' # Making up some clusters.
#' sce <- logNormCounts(sce)
#' clusters <- kmeans(t(logcounts(sce)), centers=3)$cluster
#'
#' # Creating a set of pseudo-bulk profiles:
#' info <- DataFrame(sample=sce$samples, cluster=clusters)
#' pseudo <- sumCountsAcrossCells(sce, info)
#'
#' # Making up an experimental design for our 8 samples.
#' pseudo$DRUG <- gl(2,4)[pseudo$sample]
#'
#' # DGE analysis:
#' out <- pseudoBulkDGE(pseudo,
#' label=pseudo$cluster,
#' condition=pseudo$DRUG,
#' design=~DRUG,
#' coef="DRUG2"
#' )
#' out[[1]]
#' metadata(out[[1]])$design
#' @seealso
#' \code{\link{sumCountsAcrossCells}}, to easily generate the pseudo-bulk count matrix.
#'
#' \code{\link{decideTestsPerLabel}}, to generate a summary of the DE results across all labels.
#'
#' \code{\link{pseudoBulkSpecific}}, to look for label-specific DE genes.
#'
#' \code{pbDS} from the \pkg{muscat} package, which uses a similar approach.
#' @name pseudoBulkDGE
NULL
.pseudo_bulk_master <- function(x, col.data, label, design, coef, contrast=NULL,
condition=NULL, lfc=0, include.intermediates=TRUE, row.data=NULL, sorted=FALSE,
method=c("edgeR", "voom"), qualities=TRUE, robust=TRUE, sample=NULL)
{
if (!is.null(sample)) {
.Deprecated(msg="'sample=' is deprecated and will be ignored")
}
if (is.matrix(design)) {
.Defunct(msg="matrix 'design=' is defunct, use a formula or function instead")
}
.pseudo_bulk_dge(x=x, col.data=col.data, label=label, condition=condition,
design=design, coef=coef, contrast=contrast, lfc=lfc, row.data=row.data,
sorted=sorted, include.intermediates=include.intermediates,
method=match.arg(method), qualities=qualities, robust=robust)
}
#' @importFrom edgeR DGEList
#' @importFrom S4Vectors DataFrame SimpleList metadata metadata<-
.pseudo_bulk_dge <- function(x, col.data, label, design, coef, contrast=NULL,
condition=NULL, lfc=0, null.lfc.list=NULL, row.data=NULL, sorted=FALSE, include.intermediates=FALSE,
method=c("edgeR", "voom"), qualities=TRUE, robust=TRUE)
{
de.results <- list()
failed <- character(0)
label <- as.character(label)
method <- match.arg(method)
# Avoid requiring 'coef' if 'contrast' is specified.
if (!is.null(contrast)) {
coef <- NULL
}
for (i in sort(unique(label))) {
chosen <- i==label
curx <- x[,chosen,drop=FALSE]
curdata <- col.data[chosen,,drop=FALSE]
y <- DGEList(curx, samples=as.data.frame(curdata))
curcond <- condition[chosen]
curdesign <- try({
if (is.function(design)) {
design(curdata)
} else {
model.matrix(design, data=curdata)
}
}, silent=TRUE)
if (is(curdesign, "try-error")) {
failed <- c(failed, i)
next
} else {
args <- list(y, row.names=rownames(x), curdesign=curdesign, curcond=curcond,
coef=coef, contrast=contrast, lfc=lfc, null.lfc=null.lfc.list[[i]],
robust=robust, include.intermediates=include.intermediates)
if (method=="edgeR") {
stuff <- do.call(.pseudo_bulk_edgeR, args)
pval.field <- "PValue"
} else {
stuff <- do.call(.pseudo_bulk_voom, c(args, list(qualities=qualities)))
pval.field <- "p.value"
}
if (is.null(stuff)) {
failed <- c(failed, i)
next
}
}
if (!is.null(row.data)) {
# Adding stuff[,0] to preserve the DF's metadata and row names.
stuff <- cbind(stuff[,0], row.data, stuff)
}
if (sorted) {
o <- order(stuff[,pval.field])
stuff <- stuff[o,,drop=FALSE]
}
de.results[[i]] <- stuff
}
output <- SimpleList(de.results)
metadata(output)$failed <- failed
output
}
#' @importFrom S4Vectors DataFrame metadata metadata<-
#' @importFrom edgeR estimateDisp glmQLFit glmQLFTest getOffset scaleOffset
#' calcNormFactors filterByExpr topTags glmLRT glmFit glmTreat
#' @importFrom limma makeContrasts
.pseudo_bulk_edgeR <- function(y, row.names, curdesign, curcond, coef, contrast,
lfc, null.lfc, include.intermediates, robust=TRUE)
{
ngenes <- nrow(y)
gkeep <- filterByExpr(y, design=curdesign, group=curcond)
y <- y[gkeep,]
y <- calcNormFactors(y)
rank <- qr(curdesign)$rank
if (rank == nrow(curdesign) || rank < ncol(curdesign)) {
return(NULL)
}
if (is.character(contrast)) {
contrast <- makeContrasts(contrasts=contrast, levels=curdesign)
}
lfc.out <- .compute_offsets_by_lfc(design=curdesign, coef=coef,
contrast=contrast, filtered=gkeep, null.lfc=null.lfc)
if (!is.null(lfc.out)) {
offsets <- t(t(lfc.out)/log2(exp(1)) + getOffset(y))
y <- scaleOffset(y, offsets)
}
y <- estimateDisp(y, curdesign)
fit <- glmQLFit(y, curdesign, robust=robust)
if (lfc==0) {
res <- glmQLFTest(fit, coef=coef, contrast=contrast)
} else {
res <- glmTreat(fit, lfc=lfc, coef=coef, contrast=contrast)
}
tab <- topTags(res, n=Inf, sort.by="none")
expander <- match(seq_len(ngenes), which(gkeep))
tab <- DataFrame(tab$table[expander,,drop=FALSE])
rownames(tab) <- row.names
metadata(tab)$design <- curdesign
if (include.intermediates) {
metadata(tab)$y <- y
metadata(tab)$fit <- fit
}
tab
}
#' @importFrom limma contrastAsCoef
.compute_offsets_by_lfc <- function(design, coef, contrast, filtered, null.lfc) {
if (is.null(null.lfc) || all(null.lfc==0)) {
return(NULL)
}
if (!is.null(contrast)) {
out <- contrastAsCoef(design, contrast)
design <- out$design
coef <- out$coef
}
stopifnot(length(coef)==1)
null.lfc <- rep(null.lfc, length.out=length(filtered))
null.lfc <- null.lfc[filtered]
outer(null.lfc, design[,coef])
}
#' @importFrom S4Vectors DataFrame metadata metadata<-
#' @importFrom edgeR calcNormFactors filterByExpr
#' @importFrom limma voom voomWithQualityWeights lmFit
#' contrasts.fit eBayes treat topTable makeContrasts
.pseudo_bulk_voom <- function(y, row.names, curdesign, curcond, coef, contrast,
lfc, null.lfc, include.intermediates, qualities=TRUE, robust=TRUE)
{
ngenes <- nrow(y)
gkeep <- filterByExpr(y, design=curdesign, group=curcond)
y <- y[gkeep,]
y <- calcNormFactors(y)
rank <- qr(curdesign)$rank
if (rank == nrow(curdesign) || rank < ncol(curdesign)) {
return(NULL)
}
if (qualities) {
v <- voomWithQualityWeights(y, curdesign)
} else {
v <- voom(y, curdesign)
}
if (is.character(contrast)) {
contrast <- makeContrasts(contrasts=contrast, levels=curdesign)
}
lfc.out <- .compute_offsets_by_lfc(design=curdesign, coef=coef,
contrast=contrast, filtered=gkeep, null.lfc=null.lfc)
if (!is.null(lfc.out)) {
v$E <- v$E - lfc.out
}
fit <- lmFit(v)
if (!is.null(contrast)) {
fit <- contrasts.fit(fit, contrast)
coef <- 1
}
if (lfc==0) {
res <- eBayes(fit, robust=robust)
} else {
res <- treat(fit, lfc=lfc, robust=robust)
}
tab <- topTable(res, coef=coef, number=Inf, sort.by="none")
expander <- match(seq_len(ngenes), which(gkeep))
tab <- DataFrame(tab[expander,,drop=FALSE])
rownames(tab) <- row.names
metadata(tab)$design <- curdesign
if (include.intermediates) {
metadata(tab)$y <- y
metadata(tab)$v <- v
metadata(tab)$fit <- fit
}
tab
}
#' @export
#' @rdname pseudoBulkDGE
setGeneric("pseudoBulkDGE", function(x, ...) standardGeneric("pseudoBulkDGE"))
#' @export
#' @rdname pseudoBulkDGE
setMethod("pseudoBulkDGE", "ANY", .pseudo_bulk_master)
#' @export
#' @rdname pseudoBulkDGE
#' @importFrom SummarizedExperiment assay colData
setMethod("pseudoBulkDGE", "SummarizedExperiment", function(x, col.data=colData(x), ..., assay.type=1) {
.pseudo_bulk_master(assay(x, assay.type), col.data=col.data, ...)
})
|