1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
|
# This tests out the scaledColRanks function.
# require(scran); require(testthat); source("setup.R"); source("test-colranks.R")
ncells <- 100
ngenes <- 200
set.seed(430000)
test_that("scaledColRanks correctly computes the ranks", {
dummy <- matrix(rnbinom(ncells*ngenes, mu=10, size=20), ncol=ncells, nrow=ngenes)
emp.ranks <- scaledColRanks(dummy)
ref <- apply(dummy, 2, FUN=function(y) {
r <- rank(y)
r <- r - mean(r)
r/sqrt(sum(r^2))/2
})
expect_equal(emp.ranks, ref)
# Behaves with many ties.
dummy <- matrix(sample(50, ncells*ngenes, replace=TRUE), ncol=ncells, nrow=ngenes)
emp.ranks <- scaledColRanks(dummy)
ref <- apply(dummy, 2, FUN=function(y) {
r <- rank(y)
r <- r - mean(r)
r/sqrt(sum(r^2))/2
})
expect_equal(emp.ranks, ref)
# Behaves with no ties.
dummy <- matrix(rnorm(ncells*ngenes), ncol=ncells, nrow=ngenes)
emp.ranks <- scaledColRanks(dummy)
ref <- apply(dummy, 2, FUN=function(y) {
r <- rank(y)
r <- r - mean(r)
r/sqrt(sum(r^2))/2
})
expect_equal(emp.ranks, ref)
# Works correctly with shuffling.
shuffled <- sample(ncells)
emp.ranks <- scaledColRanks(dummy, subset.row=shuffled)
ref <- apply(dummy, 2, FUN=function(y) {
r <- rank(y[shuffled])
r <- r - mean(r)
r/sqrt(sum(r^2))/2
})
expect_equal(emp.ranks, ref)
# Works correctly on sparse matrices.
sparse <- abs(Matrix::rsparsematrix(ngenes, ncells, density=0.1))
out <- scaledColRanks(sparse, min.mean=0)
ref <- scaledColRanks(as.matrix(sparse), min.mean=0)
expect_identical(unname(out), unname(ref))
})
set.seed(430001)
test_that("scaledColRanks responds to other options", {
mat <- matrix(rnbinom(ncells*ngenes, mu=10, size=20), ncol=ncells, nrow=ngenes)
# Subsetting.
keep <- sample(ngenes, ngenes/2)
rnks <- scaledColRanks(mat, subset.row=keep)
expect_identical(rnks, scaledColRanks(mat[keep,]))
# Minimum mean.
rnks <- scaledColRanks(mat, min.mean=10)
expect_identical(rnks, scaledColRanks(mat, subset.row=scuttle::calculateAverage(mat) >= 10))
# Transposition.
rnks <- scaledColRanks(mat, transposed=TRUE)
expect_identical(rnks, t(scaledColRanks(mat)))
})
set.seed(430002)
test_that("scaledColRanks naming is handled correctly", {
mat <- matrix(rnbinom(ncells*ngenes, mu=10, size=20), ncol=ncells, nrow=ngenes)
rownames(mat) <- seq_len(nrow(mat))
colnames(mat) <- seq_len(ncol(mat))
rnks <- scaledColRanks(mat)
expect_identical(dimnames(rnks), dimnames(mat))
rnks <- scaledColRanks(mat, transposed=TRUE)
expect_identical(dimnames(rnks), rev(dimnames(mat)))
rnks <- scaledColRanks(mat, subset.row=1:10)
expect_identical(rownames(rnks), rownames(mat)[1:10])
rnks <- scaledColRanks(mat, withDimnames=FALSE)
expect_identical(dimnames(rnks), NULL)
})
set.seed(430003)
test_that("scaledColRanks handles sparsity requests", {
mat <- matrix(rnbinom(ncells*ngenes, mu=1, size=20), ncol=ncells, nrow=ngenes)
ref <- scaledColRanks(mat)
library(Matrix)
rnks <- scaledColRanks(mat, as.sparse=TRUE)
expect_s4_class(rnks, "dgCMatrix")
expect_identical(rnks!=0, as(mat, "dgCMatrix")!=0)
centred <- sweep(rnks, 2, Matrix::colMeans(rnks), "-")
centred <- as.matrix(centred)
dimnames(centred) <- NULL
expect_equal(centred, ref)
# With transposition.
rnks <- scaledColRanks(mat, as.sparse=TRUE, transposed=TRUE)
expect_identical(rnks!=0, as(t(mat), "dgCMatrix")!=0)
centred <- rnks - Matrix::rowMeans(rnks)
centred <- as.matrix(centred)
dimnames(centred) <- NULL
expect_equal(centred, t(ref))
})
set.seed(430003)
test_that("scaledColRanks handles DA inputs", {
dummy <- matrix(rnbinom(ncells*ngenes, mu=10, size=20), ncol=ncells, nrow=ngenes)
expect_identical(scaledColRanks(dummy), scaledColRanks(DelayedArray(dummy)))
expect_identical(scaledColRanks(dummy, transposed=TRUE), scaledColRanks(DelayedArray(dummy), transposed=TRUE))
expect_identical(scaledColRanks(dummy, as.sparse=TRUE), scaledColRanks(DelayedArray(dummy), as.sparse=TRUE))
})
set.seed(430004)
test_that("scaledColRanks handles silly inputs", {
mat <- matrix(rnbinom(ncells*ngenes, mu=10, size=20), ncol=ncells, nrow=ngenes)
expect_error(scaledColRanks(mat[0,,drop=FALSE]), "rank variances of zero detected for a cell")
out <- scaledColRanks(mat[,0,drop=FALSE])
expect_identical(dim(out), c(as.integer(ngenes), 0L))
})
|