1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
# This checks the denoisePCA function.
# require(scran); require(testthat); source("setup.R"); source("test-denoise-pca.R")
set.seed(70001)
test_that("denoisePCANumber works as expected", {
v <- sort(runif(100))
total <- sum(v)
tech.var <- total * 0.8
out <- denoisePCANumber(v, tech.var, total)
expect_identical(out, length(v) - sum(cumsum(rev(v)) < tech.var))
alt <- denoisePCANumber(head(v, out+5L), tech.var, total)
expect_identical(out, alt)
alt <- denoisePCANumber(head(v, out+1L), tech.var, total)
expect_identical(out, alt)
alt <- denoisePCANumber(head(v, out-1L), tech.var, total)
expect_identical(out-1L, alt)
tech.var <- 0
out <- denoisePCANumber(v, tech.var, total)
expect_identical(out, length(v))
tech.var <- total
out <- denoisePCANumber(v, tech.var, total)
expect_identical(out, 1L)
})
################################
# Running tests for denoisePCA. This requires a mean-variance trend,
# hence the somewhat complex set-up for the mock data.
set.seed(1000)
ngenes <- 1000
npops <- 10
ncells <- 200
means <- 2^runif(ngenes, -1, 10)
pops <- matrix(2^rnorm(npops * ngenes), ncol=npops) * means
in.pop <- sample(npops, ncells, replace=TRUE)
true.means <- pops[,in.pop,drop=FALSE]
dispersions <- 10/means + 0.2
counts <- matrix(rnbinom(ngenes*ncells, mu=true.means, size=1/dispersions), ncol=ncells)
rownames(counts) <- paste0("Gene", seq_len(ngenes))
nspikes <- 100
chosen <- sample(ngenes, nspikes)
spikes <- matrix(rnbinom(nspikes*ncells, mu=true.means[chosen], size=1/dispersions[chosen]), ncol=ncells)
rownames(spikes) <- paste0("SPIKE", seq_len(nspikes))
# We use a spike-in-based trend to avoid potential issues with bio==0 when
# fitting directly to genes. These lead to fragile tests due to numerical
# imprecision breaking equality upon certain operations.
dec <- modelGeneVarWithSpikes(counts, spikes=spikes,
size.factors=rep(1, ncells), spike.size.factors=rep(1, ncells))
lcounts <- log2(counts + 1)
##########################################
##########################################
test_that("getDenoisedPCs works as expected", {
d.out <- getDenoisedPCs(lcounts, technical=dec, subset.row=NULL)
expect_identical(nrow(d.out$components), ncol(lcounts))
verify_npcs <- function(d.out, sdev, tech.total) {
npcs <- ncol(d.out$components)
var.exp <- sdev^2
total.var <- sum(var.exp)
expect_equal(npcs[1], denoisePCANumber(var.exp, tech.total, total.var))
# Chosen number of PCs should be at the technical threshold.
expect_true(sum(var.exp[(npcs+1):ncol(lcounts)]) < tech.total)
expect_true(sum(var.exp[(npcs):ncol(lcounts)]) > tech.total)
reported <- d.out$percent.var
exp.var <- sdev^2
expect_equal(reported, exp.var[seq_along(reported)]/sum(exp.var) * 100)
}
keep <- dec$bio > 0
pc.out <- prcomp(t(lcounts[keep,]))
total.tech <- sum(dec$tech[keep])
verify_npcs(d.out, pc.out$sdev, total.tech)
npcs <- ncol(d.out$components)
expect_equal(d.out$components, pc.out$x[,seq_len(npcs)])
expect_equivalent(d.out$rotation, pc.out$rotation[,seq_len(npcs)])
# Checking with different values for the technical noise, just in case.
for (sub in c(0.05, 0.1, 0.2)) {
tmp <- dec
tmp$tech <- tmp$tech - sub
d.out2 <- getDenoisedPCs(lcounts, technical=tmp, subset.row=NULL)
expect_false(ncol(d.out$components)==ncol(d.out2$components))
keep <- tmp$total > tmp$tech
pc.out <- prcomp(t(lcounts[keep,]))
total.tech <- sum(tmp$tech[keep])
verify_npcs(d.out2, pc.out$sdev, total.tech)
npcs <- ncol(d.out2$components)
expect_equal(d.out2$components, pc.out$x[,seq_len(npcs)])
expect_equivalent(d.out2$rotation, pc.out$rotation[,seq_len(npcs)])
}
})
test_that("Rotation vectors are projected correctly", {
lrout <- getDenoisedPCs(lcounts, technical=metadata(dec)$trend, subset.row=NULL, fill.missing=TRUE)
lcounts.extra <- rbind(lcounts, lcounts[1:10,])
lrout.extra <- getDenoisedPCs(lcounts.extra, technical=metadata(dec)$trend,
subset.row=seq_len(nrow(lcounts)), fill.missing=TRUE)
expect_equal(lrout$rotation[,], lrout.extra$rotation[seq_len(nrow(lcounts)),])
expect_equal(lrout$rotation[1:10,], lrout.extra$rotation[nrow(lcounts)+seq_len(10),])
# Checking that we get the exact input back when we ask for everything.
lrout <- getDenoisedPCs(lcounts, technical=dec, min.rank=ncol(lcounts),
max.rank=ncol(lcounts), fill.missing=TRUE, subset.row=NULL)
expect_equal(tcrossprod(lrout$rotation, lrout$components), lcounts - rowMeans(lcounts))
})
set.seed(1001)
test_that("getDenoisedPCs works with different technical inputs", {
ref <- getDenoisedPCs(lcounts, technical=dec, subset.row=NULL)
pcs <- getDenoisedPCs(lcounts, technical=dec$tech, subset.row=NULL)
expect_equal(ref, pcs)
# Row sums in C++ have different precision from row sums in R on 32 bit,
# as the latter uses long double and thus 80-bit precision. This seems
# to be enough to change the mean, and thus the technical trend, and thus
# whether or not a gene is kept or retained. Insane stuff.
#
# Maybe this was fixed by my use of modelGeneVar above, but I'm not sure.
if (.Platform$r_arch=="") {
alt <- getDenoisedPCs(lcounts, technical=metadata(dec)$trend, subset.row=NULL)
expect_equal(ref, alt)
}
# Testing the rescaling to force the total variance in dec$total to match the observed variance.
# This occasionally fails if you are unfortunate to get something where tech==bio,
# and the equality is broken when you do the rescaling manually.
#
# Maybe this was fixed by my use of modelGeneVar above, but I'm not willing to take the chance,
# what with us being so close to release.
rescaled <- runif(nrow(lcounts))
lcountsX <- lcounts * rescaled
ref <- scran:::.get_denoised_pcs(lcountsX, technical=dec$tech * rescaled^2, subset.row=NULL)
pcs <- scran:::.get_denoised_pcs(lcountsX, technical=dec, subset.row=NULL)
expect_equal(ref, pcs)
# Handles all-zero rows with zero variance, where scaling would be undefined.
lcountsAlt <- lcounts
lcountsAlt[1,] <- 0
decAlt <- dec
decAlt$total[1] <- decAlt$tech[1] <- decAlt$bio[1] <- 0
ref <- getDenoisedPCs(lcountsAlt, technical=decAlt$tech, subset.row=NULL)
pcs <- getDenoisedPCs(lcountsAlt, technical=decAlt, subset.row=NULL)
expect_equal(ref, pcs)
# Handles cases where observed variance is zero but reported variance is not, e.g., after blocking.
lcountsAlt[1,] <- runif(ncol(lcountsAlt))
ref <- getDenoisedPCs(lcountsAlt[-1,], technical=decAlt$tech[-1], subset.row=NULL)
pcs <- getDenoisedPCs(lcountsAlt, technical=decAlt, subset.row=NULL)
expect_equal(ref$components, pcs$components)
})
test_that("getDenoisedPCs works with subsetting", {
sub <- sample(ngenes, ngenes/2)
pcs <- getDenoisedPCs(lcounts, technical=dec, subset.row=sub)
pcs2 <- getDenoisedPCs(lcounts[sub,], technical=dec[sub,], subset.row=NULL)
are_PCs_equal(pcs$components, pcs2$components)
are_PCs_equal(pcs$rotation, pcs2$rotation)
expect_equal(pcs$percent.var, pcs2$percent.var)
# Works with different technical inputs.
alt.pcs <- getDenoisedPCs(lcounts, technical=metadata(dec)$trend, subset.row=sub)
expect_equal(alt.pcs, pcs)
alt.pcs <- getDenoisedPCs(lcounts, technical=dec$tech, subset.row=sub)
expect_equal(alt.pcs, pcs)
})
test_that("getDenoisedPCs works with min/max rank settings", {
# Setting the min/max at around ncol(ref) to force it to a predictable number of pcs.
ref <- getDenoisedPCs(lcounts, technical=dec, subset.row=NULL)$components
pcs <- getDenoisedPCs(lcounts, technical=dec, min.rank=ncol(ref)+1, subset.row=NULL)$components
expect_identical(ncol(pcs), ncol(ref)+1L)
expect_identical(pcs[,seq_len(ncol(ref))], ref[,])
pcs <- getDenoisedPCs(lcounts, technical=dec, max.rank=ncol(ref)-1, subset.row=NULL)$components
expect_identical(ncol(pcs), ncol(ref)-1L)
expect_identical(pcs[,], ref[,-ncol(ref)])
# Stress-testing some gibberish min/max settings.
pcs <- getDenoisedPCs(lcounts, technical=dec, min.rank=ncol(lcounts), max.rank=ncol(ref), subset.row=NULL)$components
expect_identical(ncol(pcs), ncol(ref))
pcs <- getDenoisedPCs(lcounts, technical=dec, min.rank=ncol(ref), max.rank=Inf, subset.row=NULL)$components
expect_identical(ncol(pcs), ncol(ref))
pcs <- getDenoisedPCs(lcounts, technical=dec, min.rank=0, max.rank=Inf, subset.row=NULL)$components
expect_identical(ncol(pcs), ncol(ref))
})
test_that("denoisePCA throws errors correctly", {
expect_error(getDenoisedPCs(lcounts[0,], dec, subset.row=NULL), "same rows")
expect_error(getDenoisedPCs(lcounts[0,], dec$tech, subset.row=NULL), "same as")
expect_error(getDenoisedPCs(lcounts[0,,drop=FALSE], dec[0,], subset.row=NULL), "a dimension is zero")
expect_error(getDenoisedPCs(lcounts[,0], dec, subset.row=NULL), "no residual d.f. in any level")
expect_warning(getDenoisedPCs(lcounts, dec), "subset.row")
})
##########################################
##########################################
test_that("denoisePCA works with SingleCellExperiment inputs", {
X <- SingleCellExperiment(list(logcounts=lcounts))
expect_warning(X2 <- denoisePCA(X, technical=dec), "subset.row")
pcx <- reducedDim(X2, "PCA")
rownames(pcx) <- NULL
pcs <- getDenoisedPCs(lcounts, technical=dec, fill.missing=TRUE, subset.row=NULL)
are_PCs_equal(pcx, pcs$components)
expect_identical(attr(pcx, "percentVar"), pcs$percent.var)
# Checking lowrank calculations.
set.seed(10)
X3 <- denoisePCA(X, technical=dec, value="lowrank", subset.row=NULL)
pcx <- assay(X3, "lowrank")
expect_equivalent(as.matrix(pcx), tcrossprod(pcs$rotation, pcs$components))
set.seed(10)
X3b <- denoisePCA(rbind(X, X[1:10,]), technical=rbind(dec, dec[1:10,]), subset.row=1:nrow(X), value="lowrank")
pcxb <- assay(X3b, "lowrank")
expect_equivalent(as.matrix(pcx), as.matrix(pcxb)[1:nrow(X),])
expect_equivalent(as.matrix(pcx[1:10,]), as.matrix(pcxb)[nrow(X) + 1:10,])
X4 <- denoisePCA(X, technical=dec, value="lowrank", subset.row=1:200)
expect_identical(dim(X3), dim(X4))
X5 <- denoisePCA(X, technical=dec, value="lowrank", subset.row=1:200, preserve.shape=FALSE)
expect_identical(rownames(X5), rownames(X)[seq_len(nrow(X)) <= 200L & dec$bio > 0])
})
|