1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
# This tests the findMarkers function.
# require(scran); require(testthat); source("test-markers.R")
set.seed(70000000)
ncells <- 200
ngenes <- 250
means <- 2^runif(ngenes, -1, 5)
dummy <- matrix(rnbinom(ngenes*ncells, mu=means, size=5), ncol=ncells, nrow=ngenes)
library(scuttle)
rownames(dummy) <- paste0("X", seq_len(ngenes))
X <- SingleCellExperiment(list(counts=dummy))
sizeFactors(X) <- colSums(dummy)
X <- logNormCounts(X)
test_that("findMarkers dispatches correctly", {
clust <- kmeans(t(logcounts(X)), centers=3)
out <- findMarkers(X, groups=clust$cluster)
out2 <- findMarkers(logcounts(X), groups=clust$cluster)
expect_identical(out, out2)
Xbase <- as(X, "SummarizedExperiment")
rownames(Xbase) <- rownames(X) # TODO: Bioconductor/SummarizedExperiment#29
out3 <- findMarkers(Xbase, groups=clust$cluster)
expect_identical(out, out3)
Xlab <- X
colLabels(Xlab) <- clust$cluster
out4 <- findMarkers(Xlab)
expect_identical(out, out4)
})
test_that("findMarkers works correctly with subsetting and spikes", {
clust <- kmeans(t(logcounts(X)), centers=3)
# Works with subsetting.
out <- findMarkers(X, groups=clust$cluster, subset.row=100:1)
out2 <- findMarkers(X[100:1,], groups=clust$cluster)
expect_identical(out, out2)
out <- findMarkers(X, groups=clust$cluster, subset.row=1:10, full.stats=TRUE)
out2 <- findMarkers(X[1:10,], groups=clust$cluster, full.stats=TRUE)
expect_identical(out, out2)
expect_identical(rownames(out[[1]]$stats.2), rownames(out[[1]])) # names propagate to internal DFs.
# Repeating with a design matrix, to check that subsetting works in both branches for coefficient calculation.
block <- factor(sample(2, ncol(X), replace=TRUE))
design <- model.matrix(~block)[,-1,drop=FALSE]
out.des <- findMarkers(logcounts(X), groups=clust$cluster, design=design, subset.row=100:1)
out.des2 <- findMarkers(logcounts(X)[100:1,,drop=FALSE], groups=clust$cluster, design=design)
expect_identical(out.des, out.des2)
})
test_that("findMarkers works correctly with row metadata", {
clust <- kmeans(t(logcounts(X)), centers=3)
meta <- DataFrame(Y=runif(nrow(X)), row.names=rownames(dummy))
out <- findMarkers(dummy, groups=clust$cluster, row.data=meta)
for (i in seq_along(out)) {
x <- out[[i]]
expect_identical(x$Y, meta[rownames(x),"Y"])
}
# Handles it without sorting.
out <- findMarkers(dummy, groups=clust$cluster, sorted=FALSE, row.data=meta)
for (i in seq_along(out)) {
x <- out[[i]]
expect_identical(rownames(x), paste0("X", seq_len(nrow(dummy))))
expect_identical(x$Y, meta$Y)
}
# Errors out properly.
nonames <- meta
rownames(nonames) <- NULL
expect_error(findMarkers(dummy, groups=clust$cluster, row.data=nonames), "inconsistent or NULL")
expect_error(findMarkers(dummy, groups=clust$cluster, sorted=FALSE, row.data=nonames), "inconsistent")
})
test_that("findMarkers works correctly with row metadata as a list", {
clust <- kmeans(t(logcounts(X)), centers=3)
meta <- summaryMarkerStats(dummy, groups=clust$cluster)
out <- findMarkers(dummy, groups=clust$cluster, sorted=FALSE, row.data=meta)
for (i in seq_along(out)) {
x <- out[[i]]
curclust <- names(out)[i]
expect_equal(x$self.average, rowMeans(dummy[,curclust==clust$cluster]))
expect_equal(x$self.detected, rowMeans(dummy[,curclust==clust$cluster] != 0))
}
# Handles sorting properly.
out2 <- findMarkers(dummy, groups=clust$cluster, sorted=TRUE, row.data=meta)
for (i in seq_along(out)) {
cur1 <- out[[i]]
cur2 <- out2[[i]]
expect_identical(cur1[rownames(cur2),], cur2)
}
# Auto-computes summaries.
auto <- findMarkers(dummy, groups=clust$cluster, sorted=FALSE, add.summary=TRUE)
expect_identical(auto, out)
})
test_that("findMarkers and getTopMarkers work correctly", {
clust <- kmeans(t(logcounts(X)), centers=3)
stats <- pairwiseTTests(dummy, groups=clust$cluster)
out <- findMarkers(dummy, groups=clust$cluster)
top <- getTopMarkers(stats[[1]], stats[[2]], pairwise=FALSE, fdr.threshold=NULL)
ref <- lapply(out, FUN=function(x) rownames(x)[x$Top <= 10])
expect_identical(as.list(top), ref)
out <- findMarkers(dummy, groups=clust$cluster, pval.type="all")
top <- getTopMarkers(stats[[1]], stats[[2]], pairwise=FALSE, pval.type="all", fdr.threshold=NULL)
ref <- lapply(out, FUN=function(x) rownames(x)[1:10])
expect_identical(as.list(top), ref)
top <- getTopMarkers(stats[[1]], stats[[2]], pairwise=FALSE, pval.type="all")
ref <- lapply(out, FUN=function(x) head(rownames(x)[x$FDR <= 0.05], 10))
expect_identical(as.list(top), ref)
# Checking with pairwise=TRUE.
out <- getTopMarkers(stats[[1]], stats[[2]], pairwise=TRUE, fdr.threshold=NULL)
expect_identical(unique(lengths(out)), 3L)
expect_equivalent(do.call(cbind, lapply(out, lengths)), (1 - diag(3)) * 10L)
expect_identical(unique(lapply(out, names)), list(as.character(1:3)))
alt <- getTopMarkers(stats[[1]], stats[[2]], pairwise=FALSE, fdr.threshold=NULL)
expect_identical(lapply(lapply(lapply(out, unlist), unique), sort), lapply(alt, sort))
# Checking some genes get thrown out by the FDR filter.
bounded <- getTopMarkers(stats[[1]], stats[[2]], pairwise=TRUE)
expect_true(all(unlist(lapply(bounded, lengths)) <= unlist(lapply(out, lengths))))
expect_true(length(unlist(bounded)) <= length(unlist(out)))
# Checking it tolerates NAs.
nastats <- stats
nastats[[1]]$FDR[1] <- NA
naive <- getTopMarkers(nastats[[1]], nastats[[2]], pairwise=TRUE)
nastats[[1]]$FDR[1] <- 1
ref <- getTopMarkers(nastats[[1]], nastats[[2]], pairwise=TRUE)
expect_identical(naive, ref)
})
test_that("findMarkers and getMarkerEffects work correctly", {
clust <- kmeans(t(logcounts(X)), centers=3)
out <- findMarkers(dummy, groups=clust$cluster)
eff <- getMarkerEffects(out[[1]])
expect_type(eff, "double")
expect_identical(colnames(eff), as.character(2:3))
# Removes NAs properly.
copy <- out[[1]]
ref <- getMarkerEffects(copy)
copy$logFC.2 <- NA
eff <- getMarkerEffects(copy, remove.na.col=TRUE)
expect_identical(ref[,-1,drop=FALSE], eff)
# Works for Wilcox tests.
out <- findMarkers(dummy, groups=clust$cluster, test.type="wilcox")
eff <- getMarkerEffects(out[[2]], prefix="AUC")
expect_type(eff, "double")
expect_identical(colnames(eff), as.character(c(1,3)))
})
|