1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
# This tests out the quickCluster method in scran.
# require(scran); require(testthat); source("setup.R"); source("test-quickclust.R")
set.seed(30000)
ncells <- 700
ngenes <- 1000
dummy <- matrix(rnbinom(ncells*ngenes, mu=10, size=20), ncol=ncells, nrow=ngenes)
known.clusters <- sample(3, ncells, replace=TRUE)
dummy[1:300,known.clusters==1L] <- 0
dummy[301:600,known.clusters==2L] <- 0
dummy[601:900,known.clusters==3L] <- 0
expect_nested <- function(known, observed)
# Sometimes the clustering breaks it up into smaller clusters; that's fine,
# as long as those smaller ones are nested within the known clusters.
{
expect_true(all(lengths(lapply(split(known, observed), unique))==1L))
}
test_that("quickCluster works in the simple case", {
emp.clusters <- quickCluster(dummy, use.ranks=FALSE)
expect_nested(known.clusters, emp.clusters)
emp.clusters <- quickCluster(dummy, d=20, use.ranks=FALSE)
expect_true(length(unique(paste0(known.clusters, emp.clusters)))==3L)
# Behaves after rows are shuffled.
shuffled <- sample(nrow(dummy))
shuf.clusters <- quickCluster(dummy, subset.row=shuffled, use.ranks=FALSE)
expect_true(length(unique(paste0(shuf.clusters, emp.clusters)))==3L)
# Behaves with use.ranks=TRUE.
emp.clusters <- quickCluster(dummy, use.ranks=TRUE)
expect_true(length(unique(paste0(known.clusters, emp.clusters)))==3L)
emp.clusters <- quickCluster(dummy, use.ranks=TRUE, d=20)
expect_true(length(unique(paste0(known.clusters, emp.clusters)))==3L)
# Behaves when PCA is turned off.
emp.clusters <- quickCluster(dummy, d=NA, use.ranks=FALSE)
expect_true(length(unique(paste0(known.clusters, emp.clusters)))==3L)
emp.clusters <- quickCluster(dummy, d=NA, use.ranks=TRUE)
expect_true(length(unique(paste0(known.clusters, emp.clusters)))==3L)
})
set.seed(300001)
test_that("quickCluster with use.ranks=TRUE is consistent with clustering on correlations", {
mat <- matrix(rpois(10000, lambda=5), nrow=20)
obs <- quickCluster(mat, use.ranks=TRUE, method="hclust", d=NA, min.size=20)
refM <- sqrt(0.5*(1 - cor(mat, method="spearman")))
distM <- as.dist(refM)
obsM <- dist(scaledColRanks(mat, transposed=TRUE))
expect_equal(as.matrix(obsM), as.matrix(distM))
htree <- hclust(distM, method='ward.D2')
clusters <- unname(dynamicTreeCut::cutreeDynamic(htree, minClusterSize=20, distM=refM, verbose=0))
expect_identical(clusters, as.integer(obs)) # this can complain if unassigned, as 0 becomes 1 in as.integer().
})
set.seed(30000101)
test_that("use.ranks=TRUE generates the correct ScaledMatrix", {
mat <- matrix(rpois(10000, lambda=5), nrow=20)
ref <- scran:::.create_rank_matrix(mat, deferred=FALSE)
def <- scran:::.create_rank_matrix(mat, deferred=TRUE)
expect_s4_class(def, "ScaledMatrix")
expect_equivalent(ref, as.matrix(def))
# Same results from the two options in quickCluster() itself.
ref <- quickCluster(mat, use.ranks=TRUE, d=NA, method="hclust")
bspar <- BiocSingular::ExactParam(deferred=TRUE)
out <- quickCluster(as(mat, "dgCMatrix"), use.ranks=TRUE, d=min(dim(mat)), method="hclust", BSPARAM=bspar)
expect_identical(ref, out)
# Set low 'k' to avoid inconsistencies caused by tied neighbors.
ref <- quickCluster(mat, use.ranks=TRUE, d=NA, method="igraph", k=2)
out <- quickCluster(as(mat, "dgCMatrix"), use.ranks=TRUE, d=min(dim(mat)), method="igraph", k=2, BSPARAM=bspar)
expect_identical(ref, out)
})
set.seed(3000011)
test_that("quickCluster functions correctly with subsetting", {
mat <- matrix(rpois(20000, lambda=1:100), nrow=100)
# Works properly with subsetting.
subset.row <- sample(nrow(mat), nrow(mat)/2)
obs <- quickCluster(mat, min.size=50, subset.row=subset.row, use.ranks=FALSE)
expect_identical(obs, quickCluster(mat[subset.row,], min.size=50, use.ranks=FALSE)) # Checking that it behaves properly.
expect_false(identical(quickCluster(mat, min.size=50, use.ranks=FALSE), obs)) # It should return different results.
# Same for ranks (use hclust to avoid issues with tied neighbors in rank space).
obs <- quickCluster(mat, min.size=50, subset.row=subset.row, use.ranks=TRUE, method="hclust")
expect_identical(obs, quickCluster(mat[subset.row,], min.size=50, use.ranks=TRUE, method="hclust"))
expect_false(identical(quickCluster(mat, min.size=50, use.ranks=TRUE, method="hclust"), obs))
# Handles the mean, but only when use.ranks=TRUE.
obs <- quickCluster(mat, min.size=50, min.mean=5, use.ranks=TRUE)
expect_identical(obs, quickCluster(mat, min.size=50, use.ranks=TRUE,
subset.row=scuttle::calculateAverage(mat) >= 5))
# 'min.mean' should have no effect when use.ranks=FALSE.
obs <- quickCluster(mat, min.size=50, min.mean=5, use.ranks=FALSE)
expect_identical(obs, quickCluster(mat, min.size=50, min.mean=1, use.ranks=FALSE))
})
set.seed(3000012)
test_that("quickCluster functions correctly with blocking", {
skip_on_os('windows') # 32-bit failure. Who knows, man. Who knows.
mat <- matrix(rpois(10000, lambda=5), nrow=20)
block <- sample(3, ncol(mat), replace=TRUE)
# Using 'hclust' to avoid problems with tied ranks and igraph.
obs <- quickCluster(mat, min.size=10, block=block, method="hclust", use.ranks=FALSE)
collected <- numeric(ncol(mat))
last <- 0L
for (x in sort(unique(block))) {
chosen <- block==x
current <- quickCluster(mat[,chosen], min.size=10, method="hclust", use.ranks=FALSE)
collected[chosen] <- as.integer(current) + last
last <- last + nlevels(current)
}
expect_identical(obs, factor(collected))
# Should behave properly with NULL or single-level.
ref <- quickCluster(mat, min.size=10, block=NULL, method="hclust", use.ranks=FALSE)
obs <- quickCluster(mat, min.size=10, block=integer(ncol(mat)), method="hclust", use.ranks=FALSE)
expect_identical(ref, obs)
# Should avoid problems with multiple BPPARAM specifications.
ref <- quickCluster(mat, min.size=10, block=block, method="hclust", use.ranks=FALSE)
obs <- quickCluster(mat, min.size=10, block=block, method="hclust", use.ranks=FALSE, block.BPPARAM=safeBPParam(2))
expect_identical(obs, ref)
})
set.seed(3000013)
test_that("quickCluster's calls to min.size in dynamic tree cut are respected", {
mat <- matrix(rpois(10000, lambda=5), nrow=20)
obs <- scran:::.quick_cluster(mat, min.size=50, method="hclust", d=NA, use.ranks=FALSE)
ref <- scuttle::normalizeCounts(mat)
refM <- dist(t(ref))
htree <- hclust(refM, method="ward.D2")
clusters <- unname(dynamicTreeCut::cutreeDynamic(htree, minClusterSize=50, distM=as.matrix(refM), verbose=0))
expect_identical(clusters, as.integer(obs))
# Forcing min.size to be larger than a population size, checking for a warning upon unassigned cells.
ncells <- 200
dummy <- matrix(rpois(ncells*200, lambda=5), nrow=200)
known.clusters <- sample(3, ncells, replace=TRUE)
dummy[1:40,known.clusters==1L] <- 0
dummy[41:80,known.clusters==2L] <- 0
dummy[81:120,known.clusters==3L] <- 0
out <- quickCluster(dummy, min.size=0, method="hclust", use.ranks=FALSE)
expect_identical(length(unique(paste(out, known.clusters))), 3L)
forced <- quickCluster(dummy, method="hclust", use.ranks=FALSE, min.size=100)
tab <- table(forced)
nonzero <- setdiff(names(tab), "0")
expect_true(all(tab[nonzero] >= 70L))
})
set.seed(300002)
test_that("quickCluster with igraph works correctly", {
k <- 10
mat <- matrix(rnorm(200000, mean=20), nrow=400)
obs <- quickCluster(mat, min.size=0, method="igraph", k=k, d=50, use.ranks=FALSE)
ref <- scuttle::normalizeCounts(mat)
snn <- buildSNNGraph(ref, k=k, d=50)
out <- igraph::cluster_walktrap(snn)
expect_identical(factor(out$membership), obs)
obs <- quickCluster(mat, min.size=0, method="igraph", k=k, d=50, graph.fun=igraph::cluster_fast_greedy,
use.ranks=FALSE)
out <- igraph::cluster_fast_greedy(snn)
expect_identical(factor(out$membership), obs)
# Checking that 'd' is respected, along with other arguments that are passed along.
obs <- quickCluster(mat, min.size=0, method="igraph", d=20, k=15, use.ranks=FALSE)
snn <- buildSNNGraph(ref, d=20, k=15)
out <- igraph::cluster_walktrap(snn)
expect_identical(factor(out$membership), obs)
obs <- quickCluster(mat, min.size=0, method="igraph", d=NA, k=5, use.ranks=FALSE)
snn <- buildSNNGraph(ref, d=NA, k=5)
out <- igraph::cluster_walktrap(snn)
expect_identical(factor(out$membership), obs)
})
set.seed(3000021)
test_that("quickCluster with igraph merging works correctly", {
k <- 10
mat <- matrix(rnorm(200000, mean=20), nrow=400)
obs <- quickCluster(mat, min.size=0, method="igraph", k=k, use.ranks=FALSE)
min.size <- 100
expect_false(all(table(obs) >= min.size))
obs2 <- quickCluster(mat, min.size=min.size, method="igraph", k=k, use.ranks=FALSE)
expect_true(all(table(obs2) >= min.size))
combined <- paste0(obs, ".", obs2)
expect_identical(length(unique(combined)), length(unique(obs))) # Confirm that they are nested.
})
set.seed(3000022)
test_that("quickCluster with igraph on ranks works correctly", {
# These tests are surprisingly fragile for use.rank=TRUE, as findKNN in
# rank space is liable to find lots of tied distances. This results in
# arbitrary choices and ordering of neighbors, which can differ between
# seeds and machines (depending on precision). Hence we need to make sure
# that there are no ties, by supplying enough dimensions with no tied
# ranks.
k <- 10
mat <- matrix(rnorm(200000, mean=20), nrow=400)
obs <- quickCluster(mat, min.size=0, method="igraph", k=k, use.ranks=FALSE)
# Checking that there are no ties within the 'k+1'th nearest neighbors for each cell.
ref <- scaledColRanks(mat)
all.dist <- as.matrix(dist(t(ref)))
diag(all.dist) <- Inf # ignore self.
out <- apply(all.dist, 1, FUN=function(d) { min(diff(sort(d)[seq_len(k+1)])) })
expect_true(min(out) > 1e-8)
# Testing igraph mode.
obs <- quickCluster(mat, min.size=0, method="igraph", k=k, use.ranks=TRUE)
expect_identical(length(obs), ncol(mat))
snn <- buildSNNGraph(ref, k=k, d=50)
out <- igraph::cluster_walktrap(snn)
expect_identical(factor(out$membership), obs)
# Passes on other parameters.
obs <- quickCluster(mat, min.size=0, method="igraph", k=10, d=20, use.ranks=TRUE)
snn <- buildSNNGraph(ref, k=10, d=20)
out <- igraph::cluster_walktrap(snn)
expect_identical(factor(out$membership), obs)
})
test_that("quickCluster fails on silly inputs", {
dummy <- matrix(rpois(10000, lambda=5), nrow=20)
expect_error(quickCluster(dummy[0,], use.ranks=FALSE), "need at least 2 points")
expect_error(quickCluster(dummy[,0], use.ranks=FALSE), "no residual d.f.")
expect_error(quickCluster(dummy[0,], use.ranks=TRUE), "rank variances of zero detected for a cell")
expect_error(quickCluster(dummy[,0], use.ranks=TRUE), "a dimension is zero")
expect_error(quickCluster(dummy[,0], d=NA, use.ranks=TRUE), "fewer cells than the minimum cluster size")
})
set.seed(20002)
test_that("quickCluster works on SingleCellExperiment objects", {
dummy <- matrix(rpois(50000, lambda=5), nrow=50)
rownames(dummy) <- paste0("X", seq_len(nrow(dummy)))
X <- SingleCellExperiment(list(counts=dummy))
emp.clusters <- quickCluster(X, use.ranks=FALSE)
expect_identical(emp.clusters, quickCluster(counts(X), use.ranks=FALSE))
# Checking correct subsetting.
subset.row <- 1:25*2
set.seed(0) # set.seed() for consistent tie handling by BiocNeighbors.
clust1 <- quickCluster(X, use.ranks=FALSE, subset.row=subset.row)
set.seed(0)
clust2 <- quickCluster(counts(X)[subset.row,], use.ranks=FALSE)
expect_identical(clust1, clust2)
})
set.seed(200031)
test_that("quickCluster works on alternative matrices", {
# Testing with ranks.
sparse <- abs(Matrix::rsparsematrix(ngenes, ncells, density=0.1))
out <- quickCluster(sparse, min.mean=0, use.ranks=TRUE)
ref <- quickCluster(as.matrix(sparse), min.mean=0, use.ranks=TRUE)
expect_identical(out, ref)
# Testing without ranks. Note that, if seed is 20003, this results in an
# extremely unfortunate discrepancy caused by numerical imprecision in the log calculation,
# such that bio > 0 (barely!) in one run and bio == 0 in another run.
library(HDF5Array)
dummy <- as(matrix(rpois(50000, lambda=5), nrow=50), "HDF5Array")
out <- quickCluster(dummy, min.mean=0, use.ranks=FALSE)
ref <- quickCluster(as.matrix(dummy), min.mean=0, use.ranks=FALSE)
expect_identical(out, ref)
})
|