1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
# Tests for normalisation methods
# library(scuttle); library(testthat); source("setup.R"); source("test-norm.R")
ncells <- ncol(sce)
ngenes <- nrow(sce)
dummy <- counts(sce)
# Making up some size factors.
X <- sce
ref <- runif(ncells)
sizeFactors(X) <- ref
test_that("normalizeCounts works as expected", {
out <- normalizeCounts(dummy, ref, center_size_factors=FALSE)
expect_equal(out, log2(t(t(dummy)/ref)+1))
# With size factor centering.
sf <- ref/mean(ref)
out <- normalizeCounts(dummy, ref)
expect_equal(out, log2(t(t(dummy)/sf)+1))
# Without log-transformation.
out <- normalizeCounts(dummy, ref, log=FALSE)
expect_equal(out, t(t(dummy)/sf))
# With subsetting.
out <- normalizeCounts(dummy, ref, subset_row=1:10)
sub <- normalizeCounts(dummy[1:10,], ref)
expect_equal(out, sub)
out <- normalizeCounts(dummy, subset_row=1:10)
sub <- normalizeCounts(dummy[1:10,])
expect_equal(out, sub)
chosen <- sample(rownames(dummy), 10)
out <- normalizeCounts(dummy, ref, subset_row=chosen)
sub <- normalizeCounts(dummy[chosen,], ref)
expect_equal(out, sub)
})
test_that("normalizeCounts handles silly inputs correctly", {
out <- normalizeCounts(dummy[0,,drop=FALSE], ref, log=FALSE)
expect_identical(dim(out), c(0L, as.integer(ncells)))
out <- normalizeCounts(dummy[0,,drop=FALSE])
expect_identical(dim(out), c(0L, as.integer(ncells)))
out <- normalizeCounts(dummy[,0,drop=FALSE], ref[0], log=FALSE)
expect_identical(dim(out), c(as.integer(ngenes), as.integer(0L)))
expect_error(normalizeCounts(dummy, ref[0]), "does not equal")
expect_error(normalizeCounts(dummy, rep(0, ncol(dummy))), "should be positive")
expect_error(normalizeCounts(dummy, rep(NA_real_, ncol(dummy))), "should be positive")
})
test_that("normalizeCounts behaves with sparse inputs", {
zeroed <- dummy
zeroed[rbinom(length(zeroed), 1, 0.95)==1] <- 0
library(Matrix)
sparsed <- as(zeroed, "dgCMatrix")
expect_s4_class(out <- normalizeCounts(sparsed, ref), "dgCMatrix")
expect_equal(normalizeCounts(zeroed, ref), as.matrix(out))
expect_s4_class(out <- normalizeCounts(sparsed, ref, log=FALSE), "dgCMatrix")
expect_equal(normalizeCounts(zeroed, ref, log=FALSE), as.matrix(out))
out <- normalizeCounts(sparsed, ref, pseudo.count=2)
expect_equivalent(as.matrix(normalizeCounts(zeroed, ref, pseudo.count=2)), as.matrix(out))
expect_s4_class(out <- normalizeCounts(sparsed, ref, subset_row=1:10), "dgCMatrix")
expect_equal(normalizeCounts(zeroed, ref, subset_row=1:10), as.matrix(out))
# Trying with a triplet form.
sparsed <- as(zeroed, "dgTMatrix")
dimnames(sparsed) <- dimnames(zeroed) # huh, bug in Matrix.
expect_s4_class(out <- normalizeCounts(sparsed, ref), "dgTMatrix")
expect_equal(normalizeCounts(zeroed, ref), as.matrix(out))
expect_s4_class(out <- normalizeCounts(sparsed, ref, log=FALSE), "dgTMatrix")
expect_equal(normalizeCounts(zeroed, ref, log=FALSE), as.matrix(out))
out <- normalizeCounts(sparsed, ref, pseudo.count=2)
expect_equivalent(normalizeCounts(zeroed, ref, pseudo.count=2), as.matrix(out))
expect_s4_class(out <- normalizeCounts(sparsed, ref, subset_row=1:10), "dgTMatrix")
expect_equal(normalizeCounts(zeroed, ref, subset_row=1:10), as.matrix(out))
})
test_that("normalizeCounts behaves with DelayedArray inputs", {
library(DelayedArray)
dadum <- DelayedArray(dummy)
expect_s4_class(out <- normalizeCounts(dadum, ref), "DelayedMatrix")
expect_equal(normalizeCounts(dummy, ref), as.matrix(out))
expect_s4_class(out <- normalizeCounts(dadum, ref, log=FALSE), "DelayedMatrix")
expect_equal(normalizeCounts(dummy, ref, log=FALSE), as.matrix(out))
expect_s4_class(out <- normalizeCounts(dadum, ref, pseudo.count=2), "DelayedMatrix")
expect_equal(normalizeCounts(dummy, ref, pseudo.count=2), as.matrix(out))
expect_s4_class(out <- normalizeCounts(dadum, ref, subset_row=1:10), "DelayedMatrix")
expect_equal(normalizeCounts(dummy, ref, subset_row=1:10), as.matrix(out))
# Library sizes are correctly obtained.
expect_s4_class(out <- normalizeCounts(dadum), "DelayedMatrix")
expect_equal(normalizeCounts(dummy), as.matrix(out))
expect_s4_class(out <- normalizeCounts(dadum, subset_row=1:10), "DelayedMatrix")
expect_equal(normalizeCounts(dummy, subset_row=1:10), as.matrix(out))
# Preserves sparsity (or not).
zeroed <- dummy
zeroed[rbinom(length(zeroed), 1, 0.95)==1] <- 0
sparsed <- DelayedArray(as(zeroed, "dgCMatrix"))
expect_identical(as.matrix(normalizeCounts(sparsed)), as.matrix(normalizeCounts(zeroed)))
# expect_true(is_sparse(normalizeCounts(sparsed)))
expect_identical(as.matrix(normalizeCounts(sparsed, pseudo.count=2)), as.matrix(normalizeCounts(zeroed, pseudo.count=2)))
expect_false(is_sparse(normalizeCounts(sparsed, pseudo.count=2)))
})
test_that("normalizeCounts behaves with downsampling", {
skip("need to move downsampling in")
# Testing the two extremes.
set.seed(1000)
out <- normalizeCounts(dummy, ref, downsample=TRUE, down_prop=0)
set.seed(1000)
tst <- downsampleMatrix(dummy, min(ref)/ref)
expect_equal(log2(tst+1), out)
out <- normalizeCounts(dummy, ref, downsample=TRUE, down_prop=1, log=FALSE)
tst <- normalizeCounts(dummy, ref, log=FALSE)
expect_identical(out==0, tst==0)
expect_true(mad(out/tst) <1e-8)
# Testing that it actually does the job w.r.t. equalizing coverage.
lsf <- colSums(dummy)
out <- normalizeCounts(dummy, lsf, downsample=TRUE, down_prop=0.01, log=FALSE)
expect_true(mad(colSums(out)) < 1e-8)
out <- normalizeCounts(dummy, lsf, downsample=TRUE, down_prop=0.05, log=FALSE)
expect_true(mad(colSums(out)) < 1e-8)
out <- normalizeCounts(dummy, lsf, downsample=TRUE, down_prop=0.1, log=FALSE)
expect_true(mad(colSums(out)) < 1e-8)
# Testing with DelayedArrays.
dadum <- DelayedArray(dummy)
set.seed(1000)
out <- normalizeCounts(dummy, ref, downsample=TRUE)
set.seed(1000)
tst <- normalizeCounts(dadum, ref, downsample=TRUE)
expect_equal(out, tst)
})
test_that("normalizeCounts behaves with S(C)E inputs", {
expect_equivalent(normalizeCounts(counts(X)),
normalizeCounts(as(X, "SummarizedExperiment")))
sf <- runif(ncol(X))
expect_equivalent(normalizeCounts(counts(X), sf),
normalizeCounts(as(X, "SummarizedExperiment"), sf))
expect_equal(normalizeCounts(counts(X), sizeFactors(X)), normalizeCounts(X))
expect_equal(normalizeCounts(counts(X), sf), normalizeCounts(X, sf))
})
test_that("logNormCounts works for SE objects", {
se <- as(X, "SummarizedExperiment")
cn <- function(se) assay(se, "counts")
lc <- function(se) assay(se, "logcounts")
nc <- function(se) assay(se, "normcounts")
expect_equal(lc(logNormCounts(se)), normalizeCounts(cn(se)))
expect_equal(nc(logNormCounts(se, log=FALSE)), normalizeCounts(cn(se), log=FALSE))
expect_equal(lc(logNormCounts(se, pseudo.count=2)), normalizeCounts(cn(se), pseudo.count=2))
sf <- runif(ncol(X))
expect_equal(lc(logNormCounts(se, size_factors=sf)),
normalizeCounts(cn(se), size_factors=sf))
expect_equal(lc(logNormCounts(se, size_factors=sf, center_size_factors=FALSE)),
normalizeCounts(cn(se), size_factors=sf, center_size_factors=FALSE))
# Doesn't break on silly inputs.
expect_equal(unname(dim(logNormCounts(X[,0,drop=FALSE]))), c(ngenes, 0L))
expect_equal(unname(dim(logNormCounts(X[0,,drop=FALSE]))), c(0L, ncells))
})
test_that("logNormCounts works for SCE objects (basic)", {
expect_equal(logcounts(logNormCounts(X)), normalizeCounts(counts(X), sizeFactors(X)))
expect_equal(normcounts(logNormCounts(X, log=FALSE)), normalizeCounts(counts(X), sizeFactors(X), log=FALSE))
expect_equal(logcounts(logNormCounts(X, pseudo.count=2)), normalizeCounts(counts(X), sizeFactors(X), pseudo.count=2))
# Checking that size factors are correctly reported.
Y <- X
sizeFactors(Y) <- NULL
Y <- logNormCounts(Y)
expect_identical(sizeFactors(Y), librarySizeFactors(X))
sf <- runif(ncol(X))
Y <- logNormCounts(X, size_factors=sf)
expect_identical(sizeFactors(Y), sf/mean(sf))
Y <- logNormCounts(X, size_factors=sf, center_size_factors=FALSE)
expect_identical(sizeFactors(Y), sf)
# Checking that my pseudo-count appears and does not overwrite other scater stuff.
expect_identical(int_metadata(Y)$scater$pseudo.count, 1)
Z <- X
int_metadata(Z)$scater <- list(whee="YAY")
Z <- logNormCounts(Z)
expect_identical(int_metadata(Z)$scater$pseudo.count, 1)
expect_identical(int_metadata(Z)$scater$whee, "YAY")
# Diverts to other names.
Y <- logNormCounts(X, name="blah")
expect_identical(assay(Y, "blah"), logcounts(logNormCounts(X)))
})
test_that("logNormCounts works for SCE objects (altExp)", {
Y <- X[1:10,]
counts(Y)[sample(length(counts(Y)))] <- counts(Y) # shuffling for some variety.
sce <- X
altExp(sce, "BLAH") <- Y
sce1 <- logNormCounts(sce, use_altexps=TRUE)
# Do a class round-trip to wipe out metadata added to the int_* fields.
COMPFUN <- function(left, right) {
left <- as(left, "SummarizedExperiment")
left <- as(left, "SingleCellExperiment")
sizeFactors(left) <- NULL
right <- as(right, "SummarizedExperiment")
right <- as(right, "SingleCellExperiment")
sizeFactors(right) <- NULL
expect_equal(left, right)
}
COMPFUN(altExp(sce1, "BLAH"), logNormCounts(Y))
ref <- logNormCounts(sce) # check that it doesn't affect normalization of the main assays.
altExps(ref) <- NULL
expect_identical(ref, logNormCounts(X))
# Global size factors are respected.
sf <- runif(ncol(sce))
sce2 <- logNormCounts(sce, size_factors=sf, use_altexps=TRUE)
COMPFUN(altExp(sce2), logNormCounts(Y, size_factors=sf))
# Other parameters are respected.
sce3a <- logNormCounts(sce, pseudo.count=2, use_altexps=TRUE)
COMPFUN(altExp(sce3a), logNormCounts(Y, pseudo.count=2))
sce3b <- logNormCounts(sce, log=FALSE, use_altexps=TRUE)
COMPFUN(altExp(sce3b), logNormCounts(Y, log=FALSE))
# Internal size factors do not propagate to alternative experiments.
sce4 <- sce
sizeFactors(sce4) <- sf
sce4 <- logNormCounts(sce4, use_altexps=TRUE)
COMPFUN(altExp(sce4), logNormCounts(Y))
# Lack of centering is respected in downstream methods.
sce5 <- logNormCounts(sce, center_size_factors=FALSE, use_altexps=TRUE)
COMPFUN(altExp(sce5), logNormCounts(Y, center_size_factors=FALSE))
# Throws errors with zero-valued size factors.
sce6 <- sce
sizeFactors(altExp(sce6)) <- 0
expect_error(logNormCounts(sce6, use_altexps=TRUE), 'altExp')
expect_error(logNormCounts(sce6), NA)
})
|