File: test-qc-calc.R

package info (click to toggle)
r-bioc-scuttle 1.0.4%2Bdfsg-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 728 kB
  • sloc: cpp: 356; sh: 17; makefile: 2
file content (196 lines) | stat: -rw-r--r-- 8,557 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Test functions for QC calculation.
# library(scuttle); library(testthat); source("setup.R"); source("test-qc-calc.R")

original <- sce

test_that("we can compute standard per-cell QC metrics", {
    df <- perCellQCMetrics(original, flatten=FALSE)
    expect_identical(rownames(df), colnames(original))

    # Testing total metrics for cells.
    expect_equal(df$sum, unname(colSums(counts(original))))
    expect_equal(df$detected, unname(colSums(counts(original) > 0)))

    # Testing percentage metrics for cells.
    N <- c(50, 100, 200, 500)
    df <- perCellQCMetrics(original, percent.top=N, flatten=FALSE)

    for (i in seq_len(ncol(original))) { 
        cur_counts <- counts(original)[,i]
        o <- order(cur_counts, decreasing=TRUE)
        lib_size <- sum(cur_counts)

        for (x in N) { 
            chosen <- o[seq_len(x)]
            expect_equivalent(df$percent.top[i,as.character(x)], sum(cur_counts[chosen])/lib_size * 100) 
        }
    }

    # Flattening works as expected.
    flat <- perCellQCMetrics(original, percent.top=N)
    for (x in N) {
        expect_identical(flat[,paste0("percent.top_", x)], df$percent.top[,as.character(x)])
    }
    expect_identical(rownames(flat), colnames(original))
})

test_that("we can compute standard QC metrics with subsets", {
    ref <- perCellQCMetrics(original, flatten=FALSE)
    df <- perCellQCMetrics(original, subsets = list(set1 = 1:20), flatten=FALSE)
    expect_identical(df[,1:3], ref[,1:3])

    expect_equivalent(df$subsets$set1$sum, colSums(counts(original[1:20,])))
    expect_equivalent(df$subsets$set1$detected, colSums(counts(original[1:20,])> 0))
    expect_equivalent(df$subsets$set1$percent, df$subsets$set1$sum/df$sum * 100)

    # Testing behaviour with multiple feature controls.
    multi_controls <- list(controls1 = 1:20, controls2 = rownames(original)[500:1000])
    df2 <- perCellQCMetrics(original, subsets = multi_controls, flatten=FALSE)

    expect_equivalent(df$subsets$set1, df2$subsets$controls1)
    expect_equivalent(df2$subsets$controls2$sum, colSums(counts(original[500:1000,])))
    expect_equivalent(df2$subsets$controls2$detected, colSums(counts(original[500:1000,])> 0))
    expect_equivalent(df2$subsets$controls2$percent, df2$subsets$controls2$sum/df2$sum * 100)

    # Flattening works as expected.
    flat <- perCellQCMetrics(original, subsets = list(set1=1:20))
    expect_identical(flat$subsets_set1_sum, df$subsets$set1$sum)
})

test_that("perCellQCMetrics works with alternative experiments", {
    sce <- original
    altExp(sce, "alpha") <- original[1:10,]
    altExp(sce, "bravo") <- original[10:20,]

    ref <- perCellQCMetrics(original, flatten=FALSE)
    df <- perCellQCMetrics(sce, flatten=FALSE)
    expect_identical(df[,1:3], ref[,1:3])

    for (x in altExpNames(sce)) {
        current <- perCellQCMetrics(altExp(sce, x), flatten=FALSE)
        expect_identical(df$altexps[[x]]$sum, current$sum)
        expect_identical(df$altexps[[x]]$detected, current$detected)
        expect_equal(df$altexps[[x]]$percent, current$sum/df$total*100)
    }
    
    expect_identical(df$total, df$sum + df$altexps$alpha$sum + df$altexps$bravo$sum)

    # Flattening works as expected.
    flat <- perCellQCMetrics(sce)
    expect_identical(flat$altexps_alpha_sum, df$altexps$alpha$sum)
    expect_identical(flat$altexps_bravo_detected, df$altexps$bravo$detected)

    flat <- perCellQCMetrics(sce, use.altexps="alpha")
    expect_identical(flat$altexps_alpha_sum, df$altexps$alpha$sum)
    expect_null(flat$altexps_beta_sum)
})

test_that("perCellQCMetrics handles silly inputs", {
    expect_error(perCellQCMetrics(original, subsets = list(1:20), flatten=FALSE), "must be named")

    # Doesn't choke with no entries.
    thing <- perCellQCMetrics(original[0,], flatten=FALSE)
    expect_identical(rownames(thing), colnames(original))
    expect_true(all(thing$sum==0L))

    thing2 <- perCellQCMetrics(original[,0], flatten=FALSE)
    expect_identical(nrow(thing2), 0L)
    expect_identical(colnames(thing), colnames(thing2))

    # Percentage holds at the limit.
    df <- perCellQCMetrics(original[1:10,], percent.top=c(50, 100, 200, 500), flatten=FALSE)
    expect_true(all(df$percent.top==100))

    df <- perCellQCMetrics(original, percent.top=integer(0), flatten=FALSE)
    expect_identical(ncol(df$percent.top), 0L)

    # Responds to alternative inputs.
    blah <- sce
    assayNames(blah) <- "whee"
    expect_error(perCellQCMetrics(blah, flatten=FALSE), "counts")
    expect_error(perCellQCMetrics(blah, assay.type="whee", flatten=FALSE), NA)
})

#######################################################################
# Works for per-feature metrics.

test_that("perFeatureQCMetrics works correctly", {
    out <- perFeatureQCMetrics(original, flatten=FALSE)
    expect_identical(rownames(out), rownames(original))
    expect_equal(out$mean, unname(rowMeans(counts(original))))
    expect_equal(out$detected, unname(rowMeans(counts(original) > 0))*100)
})

test_that("we can compute standard QC metrics with cell controls", {
    expect_error(perFeatureQCMetrics(original, subsets = list(1:20), flatten=FALSE), "must be named")

    df <- perFeatureQCMetrics(original, subsets = list(set1 = 1:20), flatten=FALSE)
    sub_counts <- counts(original)[,1:20]

    expect_equal(df$subsets$set1$mean, unname(rowMeans(sub_counts)))
    expect_equal(df$subsets$set1$detected, unname(rowMeans(sub_counts > 0) * 100))
    expect_equal(df$subsets$set1$ratio, df$subsets$set1$mean/df$mean)

    # Testing behaviour with multiple cell controls.
    multi_controls <- list(controls1 = 1:5, controls2 = 10:20)
    df2 <- perFeatureQCMetrics(original, subsets = multi_controls, flatten=FALSE)

    expect_equivalent(df2$subsets$controls2$mean, rowMeans(counts(original[,10:20])))
    expect_equivalent(df2$subsets$controls2$detected, rowMeans(counts(original[,10:20])> 0)*100)
    expect_equivalent(df2$subsets$controls2$ratio, df2$subsets$controls2$mean/df2$mean)

    # Flattening works as expected.
    flat <- perFeatureQCMetrics(original, subsets = list(set1 = 1:20))
    expect_identical(rownames(flat), rownames(original))
    expect_identical(flat$subsets_set1_mean, df$subsets$set1$mean)
    expect_identical(flat$subsets_set1_ratio, df$subsets$set1$ratio)
})

test_that("perFeatureQCmetrics handles silly inputs", {
    expect_error(perFeatureQCMetrics(original, subsets = list(1:20), flatten=FALSE), "must be named")

    # Doesn't choke with no entries.
    thing <- perFeatureQCMetrics(original[,0], flatten=FALSE)
    expect_identical(rownames(thing), rownames(original))
    expect_true(all(thing$sum==0L))

    thing2 <- perFeatureQCMetrics(original[0,], flatten=FALSE)
    expect_identical(nrow(thing2), 0L)
    expect_identical(colnames(thing), colnames(thing2))

    # Responds to alternative inputs.
    blah <- sce
    assayNames(blah) <- "whee"
    expect_error(perFeatureQCMetrics(blah, flatten=FALSE), "counts")
    expect_error(perFeatureQCMetrics(blah, assay.type="whee", flatten=FALSE), NA)
})

#######################################################################
# Responds to special settings: 

test_that("we can compute standard QC metrics on sparse counts matrix", {
    alt <- original

    library(Matrix)
    counts(alt) <- as(counts(alt), "dgCMatrix")

    expect_equal(perCellQCMetrics(alt, flatten=FALSE), perCellQCMetrics(original, flatten=FALSE))
    expect_equal(perFeatureQCMetrics(alt, flatten=FALSE), perFeatureQCMetrics(original, flatten=FALSE))

    expect_equal(perCellQCMetrics(alt, subset=list(set=1:10), flatten=FALSE), 
        perCellQCMetrics(original, subset=list(set=1:10), flatten=FALSE))
    expect_equal(perFeatureQCMetrics(alt, subset=list(set=1:10), flatten=FALSE), 
        perFeatureQCMetrics(original, subset=list(set=1:10), flatten=FALSE))
})

test_that("we can compute standard QC metrics across multiple cores", {
    expect_equal(perCellQCMetrics(original, flatten=FALSE), 
        perCellQCMetrics(original, BPPARAM=safeBPParam(3), flatten=FALSE))
    expect_equal(perFeatureQCMetrics(original, flatten=FALSE), 
        perFeatureQCMetrics(original, BPPARAM=safeBPParam(3), flatten=FALSE))

    expect_equal(perCellQCMetrics(original, subset=list(set=1:10), flatten=FALSE), 
        perCellQCMetrics(original, subset=list(set=1:10), BPPARAM=safeBPParam(3), flatten=FALSE))
    expect_equal(perFeatureQCMetrics(original, subset=list(set=1:10), flatten=FALSE), 
        perFeatureQCMetrics(original, subset=list(set=1:10), BPPARAM=safeBPParam(3), flatten=FALSE))
})