1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/logNormCounts.R
\name{logNormCounts}
\alias{logNormCounts}
\alias{logNormCounts,SummarizedExperiment-method}
\alias{logNormCounts,SingleCellExperiment-method}
\title{Compute log-normalized expression values}
\usage{
logNormCounts(x, ...)
\S4method{logNormCounts}{SummarizedExperiment}(
x,
size.factors = NULL,
log = NULL,
transform = c("log", "none", "asinh"),
pseudo.count = 1,
center.size.factors = TRUE,
...,
subset.row = NULL,
normalize.all = FALSE,
assay.type = "counts",
name = NULL,
BPPARAM = SerialParam(),
size_factors = NULL,
pseudo_count = NULL,
center_size_factors = NULL,
exprs_values = NULL
)
\S4method{logNormCounts}{SingleCellExperiment}(
x,
size.factors = sizeFactors(x),
log = NULL,
transform = c("log", "none", "asinh"),
pseudo.count = 1,
center.size.factors = TRUE,
...,
subset.row = NULL,
normalize.all = FALSE,
assay.type = "counts",
use.altexps = FALSE,
name = NULL,
BPPARAM = SerialParam(),
size_factors = NULL,
pseudo_count = NULL,
center_size_factors = NULL,
exprs_values = NULL,
use_altexps = NULL
)
}
\arguments{
\item{x}{A \linkS4class{SingleCellExperiment} or \linkS4class{SummarizedExperiment} object containing a count matrix.}
\item{...}{For the generic, additional arguments passed to specific methods.
For the methods, additional arguments passed to \code{\link{normalizeCounts}}.}
\item{size.factors}{A numeric vector of cell-specific size factors.
Alternatively \code{NULL}, in which case the size factors are computed from \code{x}.}
\item{log}{Logical scalar indicating whether normalized values should be log2-transformed.
This is retained for back-compatibility and will override any setting of \code{transform}.
Users should generally use \code{transform} instead to specify the transformation.}
\item{transform}{String specifying the transformation (if any) to apply to the normalized expression values.}
\item{pseudo.count}{Numeric scalar specifying the pseudo-count to add when \code{transform="log"}.}
\item{center.size.factors}{Logical scalar indicating whether size factors should be centered at unity before being used.}
\item{subset.row}{A vector specifying the subset of rows of \code{x} for which to return normalized values.
If \code{size.factors=NULL}, the size factors are also computed from this subset.}
\item{normalize.all}{Logical scalar indicating whether to return normalized values for all genes.
If \code{TRUE}, any non-\code{NULL} value for \code{subset.row} is only used to compute the size factors.
Ignored if \code{subset.row=NULL} or \code{size.factors} is supplied.}
\item{assay.type}{A string or integer scalar specifying the assay of \code{x} containing the count matrix.}
\item{name}{String containing an assay name for storing the output normalized values.
Defaults to \code{"logcounts"} when \code{transform="log"}, \code{"ashcounts"} when \code{transform="asinh"}, and \code{"normcounts"} otherwise.}
\item{BPPARAM}{A \linkS4class{BiocParallelParam} object specifying how library size factor calculations should be parallelized.
Only used if \code{size.factors} is not specified.}
\item{size_factors, pseudo_count, center_size_factors, exprs_values}{Deprecated.}
\item{use.altexps, use_altexps}{Deprecated, use \code{\link{applySCE}} instead (see Examples).}
}
\value{
\code{x} is returned containing the (log-)normalized expression values in an additional assay named as \code{name}.
If \code{x} is a \linkS4class{SingleCellExperiment}, the size factors used for normalization are stored in \code{\link{sizeFactors}}.
These are centered if \code{center.size.factors=TRUE}.
}
\description{
Compute log-transformed normalized expression values from a count matrix in a \linkS4class{SingleCellExperiment} object.
}
\details{
This function is a convenience wrapper around \code{\link{normalizeCounts}}.
It returns a \linkS4class{SingleCellExperiment} or \linkS4class{SummarizedExperiment} containing the normalized values in a separate assay.
This makes it easier to perform normalization by avoiding book-keeping errors during a long analysis workflow.
If \code{NULL}, size factors are determined as described in \code{\link{normalizeCounts}}.
\code{subset.row} and \code{normalize.all} have the same interpretation as for \code{\link{normalizeCounts}}.
If \code{x} is a SingleCellExperiment, normalization is not applied to any alternative Experiments.
Users can call \code{\link{applySCE}} to perform the normalization on each alternative Experiment - see Examples.
Any Experiment-specific size factors will be automatically used, otherwise library size-based factors will be derived from the column sums.
}
\examples{
example_sce <- mockSCE()
# Standard library size normalization:
example_sce2 <- logNormCounts(example_sce)
assayNames(example_sce2)
logcounts(example_sce2)[1:5,1:5]
# Without logging, the assay is 'normcounts':
example_sce2 <- logNormCounts(example_sce, log=FALSE)
assayNames(example_sce2)
normcounts(example_sce2)[1:5,1:5]
# Pre-loading with size factors:
example_sce2 <- computeMedianFactors(example_sce)
example_sce2 <- logNormCounts(example_sce2)
logcounts(example_sce2)[1:5,1:5]
# Also normalizing the alternative experiments:
example_sce2 <- applySCE(example_sce, logNormCounts)
logcounts(altExp(example_sce2))[1:5,1:5]
}
\seealso{
\code{\link{normalizeCounts}}, which is used to compute the normalized expression values.
}
\author{
Aaron Lun, based on code by Davis McCarthy
}
|