File: aggregateAcrossCells.R

package info (click to toggle)
r-bioc-scuttle 1.8.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 888 kB
  • sloc: cpp: 508; sh: 7; makefile: 2
file content (268 lines) | stat: -rw-r--r-- 12,804 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
#' Aggregate data across groups of cells
#' 
#' Sum counts or average expression values for each feature across groups of cells,
#' while also aggregating values in the \code{\link{colData}} and other fields in a SummarizedExperiment.
#'
#' @param x A \linkS4class{SingleCellExperiment} or \linkS4class{SummarizedExperiment}
#' containing one or more matrices of expression values to be aggregated;
#' possibly along with \code{\link{colData}}, \code{\link{reducedDims}} and \code{\link{altExps}} elements.
#' @inheritParams summarizeAssayByGroup
#' @param statistics Character vector specifying the type of statistics to be computed, see \code{?\link{summarizeAssayByGroup}}.
#' If not specified, defaults to \code{"sum"}.
#' @param average Deprecated, specifies whether to compute the average - use \code{statistics="mean"} instead.
#' Only used if \code{statistics=NULL}.
#' @param subset.row An integer, logical or character vector specifying the features to use.
#' If \code{NULL}, defaults to all features.
#' @param suffix Logical scalar indicating whether to always suffix the assay name with the statistic type.
#' @param ... For the generic, further arguments to be passed to specific methods.
#'
#' For the SummarizedExperiment method, further arguments to be passed to \code{\link{summarizeAssayByGroup}}.
#'
#' For the SingleCellExperiment method, arguments to be passed to the SummarizedExperiment method.
#' @param use.assay.type A character or integer vector specifying the assay(s) of \code{x} containing count matrices.
#' @param use.altexps Deprecated, use \code{\link{applySCE}} instead. 
#' @param use.dimred Logical scalar indicating whether aggregation should be performed for dimensionality reduction results.
#' Alternatively, a character or integer vector specifying the dimensionality reduction results to be aggregated.
#' @param coldata.merge A named list of functions specifying how each column metadata field should be aggregated.
#' Each function should be named according to the name of the column in \code{\link{colData}} to which it applies.
#' Alternatively, a single function can be supplied, see below for more details.
#' @param dimred.stats A character vector specifying how the reduced dimensions should be aggregated by group.
#' This can be one or more of \code{"mean"} and \code{"median"}.
#' @param subset_row,subset_col,store_number,use_exprs_values,use_altexps,use_dimred,coldata_merge
#' Soft deprecated equivalents to the arguments described above.
#'
#' @return 
#' A SummarizedExperiment of the same class of \code{x} is returned containing summed/averaged matrices 
#' generated by \code{\link{summarizeAssayByGroup}} on all assays in \code{use.assay.type}.
#' Column metadata are also aggregated according to the rules in \code{coldata.merge}, see Details.
#'
#' @details
#' This function summarizes the assay values in \code{x} for each group in \code{ids} using \code{\link{summarizeAssayByGroup}}
#' while also aggregating metadata across cells in a \dQuote{sensible} manner.
#' This makes it useful for obtaining an aggregated \linkS4class{SummarizedExperiment} during an analysis session;
#' in contrast, \code{\link{summarizeAssayByGroup}} is more lightweight and is better for use inside other functions.
#' 
#' Aggregation of the \code{\link{colData}} is controlled using functions in \code{coldata.merge}.
#' This can either be:
#' \itemize{
#' \item A function that takes a subset of entries for any given column metadata field and returns a single value.
#' This can be set to, e.g., \code{\link{sum}} or \code{\link{median}} for numeric covariates,
#' or a function that takes the most abundant level for categorical factors.
#' \item A named list of such functions, where each function is applied to the column metadata field after which it is named.
#' Any field that does not have an entry in \code{coldata.merge} is \dQuote{unspecified} and handled as described below.
#' A list element can also be set to \code{FALSE}, in which case no aggregation is performed for the corresponding field.
#' \item \code{NULL}, in which case all fields are considered to be unspecified.
#' \item \code{FALSE}, in which case no aggregation of column metadata is performed.
#' }
#' For any unspecified field, we check if all cells of a group have the same value.
#' If so, that value is reported, otherwise a \code{NA} is reported for the offending group.
#'
#' By default, each matrix values is returned with the same name as the original per-cell matrix from which it was derived.
#' If \code{statistics} is of length greater than 1 or \code{suffix=TRUE},
#' the names of all aggregated matrices are suffixed with their type of aggregate statistic.
#'
#' If \code{ids} is a \linkS4class{DataFrame}, the combination of levels corresponding to each column is also reported in the column metadata.
#' Otherwise, the level corresponding to each column is reported in the \code{ids} column metadata field as well as in the column names.
#'
#' If \code{x} is a \linkS4class{SingleCellExperiment}, entries of \code{\link{reducedDims}} specified by \code{use.dimred} are averaged across cells.
#' This assumes that the average of low-dimensional coordinates has some meaning for a group of cells but the sum does not.
#' We can explicitly specify computation of the \code{"mean"} or \code{"median"} (or both) with \code{dimred.stats}.
#' If \code{dimred.stats} is of length greater than 1 or \code{suffix=TRUE},
#' the name of each matrix in the output \code{\link{reducedDims}} is suffixed with the type of average.
#'
#' If \code{x} is a SingleCellExperiment, any alternative Experiments are removed from the output object.
#' Users should call \code{\link{applySCE}} to repeat the same aggregation on the alternative Experiments if this is desired - see Examples.
#' 
#' @author Aaron Lun
#' @name aggregateAcrossCells
#'
#' @seealso
#' \code{\link{summarizeAssayByGroup}}, which does the heavy lifting at the assay level.
#'
#' @examples
#' example_sce <- mockSCE()
#' ids <- sample(LETTERS[1:5], ncol(example_sce), replace=TRUE)
#' out <- aggregateAcrossCells(example_sce, ids)
#' out
#'
#' batches <- sample(1:3, ncol(example_sce), replace=TRUE)
#' out2 <- aggregateAcrossCells(example_sce, 
#'       DataFrame(label=ids, batch=batches))
#' out2
#'
#' # Using another column metadata merge strategy.
#' example_sce$stuff <- runif(ncol(example_sce))
#' out3 <- aggregateAcrossCells(example_sce, ids, 
#'      coldata_merge=list(stuff=sum))
#'
#' # Aggregating across the alternative Experiments as well.
#' out4 <- applySCE(example_sce, aggregateAcrossCells, ids=ids)
#' assay(altExp(out4))[1:10,]
NULL

#' @export
#' @rdname aggregateAcrossCells
setGeneric("aggregateAcrossCells", function(x, ...) standardGeneric("aggregateAcrossCells"))

#' @export
#' @rdname aggregateAcrossCells 
#' @importFrom S4Vectors DataFrame
#' @importFrom SummarizedExperiment assay assays<- colData<- colData assayNames
setMethod("aggregateAcrossCells", "SummarizedExperiment", function(x, ids, ..., statistics=NULL, average=NULL, suffix=FALSE,
    subset.row=NULL, subset.col=NULL, store.number="ncells", coldata.merge=NULL, use.assay.type="counts",
    subset_row=NULL, subset_col=NULL, store_number="ncells", coldata_merge=NULL, use_exprs_values=NULL)
{
    subset.row <- .replace(subset.row, subset_row)
    subset.col <- .replace(subset.col, subset_col)
    store.number <- .replace(store.number, store_number)
    coldata.merge <- .replace(coldata.merge, coldata_merge)
    use.assay.type <- .replace(use.assay.type, use_exprs_values)

    new.ids <- .process_ids(x, ids, subset.col)
    new.ids.char <- as.character(new.ids) # Avoid re-coercion on every call to the output function.

    # Organizing the assays.
    use.assay.type <- .use_names_to_integer_indices(use.assay.type, x=x, nameFUN=assayNames, msg="use.assay.type")
    if (length(use.assay.type)==0L) {
        stop("'use.assay.type' must specify at least one assay")
    }

    if (is.null(statistics)) {
        if (is.null(average)) {
            statistics <- "sum"
        } else {
            .Deprecated(msg="'average=' is deprecated, use 'statistics=' instead")
            statistics <- .average2statistic(average)
        }
    }

    collected <- vector("list", length(use.assay.type))
    ncells <- NULL
    for (i in seq_along(use.assay.type)) {
        sum.out <- .summarize_assay(assay(x, use.assay.type[i]), ids=new.ids, 
            statistics=statistics, ..., subset.row=subset.row)
        ncells <- sum.out$freq
        collected[[i]] <- sum.out$summary
    }
    collected <- .apply_suffixes(collected, assay.names=assayNames(x)[use.assay.type], suffix=suffix)

    # Organizing the column metadata.
    cn <- colnames(collected[[1]])
    m <- match(cn, new.ids.char)
    coldata <- .create_coldata(ids, mapping=m, freq=ncells, store.number=store.number)

    new.cd <- .merge_DF_rows(colData(x), ids=new.ids.char, final=cn, mergeFUN=coldata.merge)
    if (length(new.cd)) {
        new.cd <- do.call(DataFrame, c(new.cd, list(check.names=FALSE, row.names=rownames(coldata))))
        coldata <- cbind(new.cd, coldata)
    }

    # Endomorphic creation of a new SummarizedExperiment.
    shell <- x[,m]
    if (!is.null(subset.row)) {
        shell <- shell[subset.row,]
    }

    assays(shell, withDimnames=FALSE) <- collected
    colData(shell) <- coldata
    shell
})

.apply_suffixes <- function(mat.list, assay.names, suffix) {
    if (!suffix && all(lengths(mat.list)==1)) {
        mat.list <- lapply(mat.list, unname)
    }
    names(mat.list) <- assay.names
    unlist(mat.list, use.names=TRUE, recursive=FALSE)
}

#' @importFrom BiocGenerics match
#' @importFrom S4Vectors split extractROWS bindROWS I
.merge_DF_rows <- function(x, ids, final, mapping=match(final, ids), mergeFUN=NULL) {
    collected <- list()
    if (isFALSE(mergeFUN)) {
        return(collected)
    }

    for (cn in colnames(x)) {
        if (!is.function(mergeFUN)) {
            FUN <- mergeFUN[[cn]]
            if (isFALSE(FUN)) {
                collected[[cn]] <- NULL
                next
            }
        } else {
            FUN <- mergeFUN
        }

        grouped <- split(x[[cn]], ids)[final]

        if (is.null(FUN)) {
            # Obtaining a NA of matched type.
            FUN <- function(x) {
                if (NROW(val <- unique(x))==1L) {
                    val 
                } else {
                    extractROWS(val, NA_integer_)
                }
            }
        }

        per.group <- lapply(grouped, FUN)
        per.group <- unname(per.group)
        if (length(per.group)>=1L) {
            col <- bindROWS(per.group[[1]], per.group[-1])
        } else {
            # Obtaining a column of the correct type.
            col <- extractROWS(FUN(x[[cn]]), 0L)
        }

        collected[[cn]] <- I(col)
    }

    collected
}

#' @export
#' @rdname aggregateAcrossCells 
#' @importFrom SingleCellExperiment altExp altExps altExp<- altExps<-
#' reducedDimNames reducedDim<- reducedDim reducedDims<- reducedDims
setMethod("aggregateAcrossCells", "SingleCellExperiment", function(x, ids, ..., 
    subset.row=NULL, subset.col=NULL, use.altexps=FALSE, use.dimred=TRUE, dimred.stats=NULL, suffix=FALSE,
    subset_row=NULL, subset_col=NULL, use_altexps=NULL, use_dimred=NULL)
{
    subset.row <- .replace(subset.row, subset_row)
    subset.col <- .replace(subset.col, subset_col)
    use.altexps <- .replace(use.altexps, use_altexps)
    use.dimred <- .replace(use.dimred, use_dimred)

    base.args <- list(x=x, ids=ids, subset.col=subset.col, suffix=suffix, ...)
    y <- do.call(callNextMethod, c(base.args, list(subset.row=subset.row)))

    # Aggregating alternative experiments (deprecated).
    if (!is.null(use.altexps) && !isFALSE(use.altexps)) {
        .Deprecated(msg="'use.altexps=' is deprecated.\nUse 'applySCE(x, aggregateAcrossCells, ...)' instead.")
    } else {
        altExps(y) <- NULL # wiping out alternative experiments, as these were not aggregated.
    }

    new.ids <- .process_ids(x, ids, subset.col)
    use.dimred <- .use_names_to_integer_indices(use.dimred, x=x, nameFUN=reducedDimNames, msg="use.dimred")

    if (is.null(dimred.stats)) {
        dimred.stats <- "mean"
    } else {
        dimred.stats <- match.arg(dimred.stats, c("mean", "median"), several.ok=TRUE)
    }

    collected <- vector("list", length(use.dimred))
    for (i in seq_along(use.dimred)) {
        current <- t(reducedDim(x, use.dimred[i]))
        out <- .summarize_assay(current, ids=new.ids, statistics=dimred.stats)
        collected[[i]] <- lapply(out$summary, t)
    }
    collected <- .apply_suffixes(collected, assay.names=reducedDimNames(x)[use.dimred], suffix=suffix)

    reducedDims(y, withDimnames=FALSE) <- collected
    y
})