1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308
|
#' Compute normalized expression values
#'
#' Compute (log-)normalized expression values by dividing counts for each cell by the corresponding size factor.
#'
#' @param x A numeric matrix-like object containing counts for cells in the columns and features in the rows.
#'
#' Alternatively, a \linkS4class{SingleCellExperiment} or \linkS4class{SummarizedExperiment} object containing such a count matrix.
#' @param assay.type A string or integer scalar specifying the assay of \code{x} containing the count matrix.
#' @param size.factors A numeric vector of cell-specific size factors.
#' Alternatively \code{NULL}, in which case the size factors are computed from \code{x}.
#' @param log Logical scalar indicating whether normalized values should be log2-transformed.
#' This is retained for back-compatibility and will override any setting of \code{transform}.
#' Users should generally use \code{transform} instead to specify the transformation.
#' @param transform String specifying the transformation (if any) to apply to the normalized expression values.
#' @param pseudo.count Numeric scalar specifying the pseudo-count to add when \code{transform="log"}.
#' @param center.size.factors Logical scalar indicating whether size factors should be centered at unity before being used.
#' @param subset.row A vector specifying the subset of rows of \code{x} for which to return normalized values.
#' If \code{size.factors=NULL}, the size factors are also computed from this subset.
#' @param normalize.all Logical scalar indicating whether to return normalized values for all genes.
#' If \code{TRUE}, any non-\code{NULL} value for \code{subset.row} is only used to compute the size factors.
#' Ignored if \code{subset.row=NULL} or \code{size.factors} is supplied.
#' @param downsample Logical scalar indicating whether downsampling should be performed prior to scaling and log-transformation.
#' @param down.target Numeric scalar specifying the downsampling target when \code{downsample=TRUE}.
#' If \code{NULL}, this is defined by \code{down.prop} and a warning is emitted.
#' @param down.prop Numeric scalar between 0 and 1 indicating the quantile to use to define the downsampling target.
#' Only used when \code{downsample=TRUE}.
#' @param ... For the generic, arguments to pass to specific methods.
#'
#' For the SummarizedExperiment method, further arguments to pass to the ANY or \linkS4class{DelayedMatrix} methods.
#'
#' For the SingleCellExperiment method, further arguments to pass to the SummarizedExperiment method.
#' @param BPPARAM A \linkS4class{BiocParallelParam} object specifying how library size factor calculations should be parallelized.
#' Only used if \code{size.factors} is not specified.
#' @param exprs_values,size_factors,pseudo_count,center_size_factors,subset_row,down_target,down_prop
#' Soft-deprecated equivalents to the arguments described previously.
#'
#' @details
#' Normalized expression values are computed by dividing the counts for each cell by the size factor for that cell.
#' This removes cell-specific scaling biases due to differences in sequencing coverage, capture efficiency or total RNA content.
#' The assumption is that such biases affect all genes equally (in a scaling manner) and thus can be removed through division by a per-cell size factor.
#'
#' If \code{transform="log"}, log-normalized values are calculated by adding \code{pseudo.count} to the normalized count and performing a log2-transformation.
#' Differences in values between cells can be interpreted as log-fold changes, which are generally more relevant than differences on the untransformed scale.
#' This provides a suitable input to downstream functions computing, e.g., Euclidean differences, which are effectively an average of the log-fold changes across genes.
#'
#' Alternatively, if \code{transform="asinh"}, an inverse hyperbolic transformation is performed.
#' This is commonly used in cytometry and converges to the log2-transformation at high normalized values.
#' (We adjust the scale so that the results are comparable to log2-values, though the actual definition uses natural log.)
#' For non-negative inputs, the main practical difference from a log2-transformation is that there is a bigger gap between transformed values derived from zero and those derived from non-zero inputs.
#'
#' If the size factors are \code{NULL}, they are determined automatically from \code{x}.
#' The sum of counts for each cell is used to compute a size factor via the \code{\link{librarySizeFactors}} function.
#' For the SingleCellExperiment method, size factors are extracted from \code{\link{sizeFactors}(x)} if available, otherwise they are computed from the assay containing the count matrix.
#'
#' If \code{subset.row} is specified, the output of the function is equivalent to supplying \code{x[subset.row,]} in the first place.
#' The exception is if \code{normalize.all=TRUE}, in which case \code{subset.row} is only used during the size factor calculation;
#' once computed, the size factors are then applied to all genes and the full matrix is returned.
#'
#' @section Centering the size factors:
#' If \code{center.size.factors=TRUE}, size factors are centred at unity prior to calculation of normalized expression values.
#' This ensures that the computed expression values can be interpreted as being on the same scale as original counts.
#' We can then compare abundances between features normalized with different sets of size factors; the most common use of this fact is in the comparison between spike-in and endogenous abundances when modelling technical noise (see \code{\link[scran]{modelGeneVarWithSpikes}} package for an example).
#'
#' In the specific case of \code{transform="log"}, centering of the size factors ensures the pseudo-count can actually be interpreted as a \emph{count}.
#' This is important as it implies that the pseudo-count's impact will diminish as sequencing coverage improves.
#' Thus, if the size factors are centered, differences between log-normalized expression values will more closely approximate the true log-fold change with increasing coverage, whereas this would not be true of other metrics like log-CPMs with a fixed offset.
#'
#' The disadvantage of using centered size factors is that the expression values are not directly comparable across different calls to \code{\link{normalizeCounts}}, typically for multiple batches.
#' In theory, this is not a problem for metrics like the CPM, but in practice, we have to apply batch correction methods anyway to perform any joint analysis - see \code{\link[batchelor]{multiBatchNorm}} for more details.
#'
#' @section Downsampling instead of scaling:
#' If \code{downsample=TRUE}, counts for each cell are randomly downsampled instead of being scaled.
#' This is occasionally useful for avoiding artifacts caused by scaling count data with a strong mean-variance relationship.
#' Each cell is downsampled according to the ratio between \code{down.target} and that cell's size factor.
#' (Cells with size factors below the target are not downsampled and are directly scaled by this ratio.)
#' Any transformation specified by \code{transform} is then applied to the downsampled counts.
#'
#' We automatically set \code{down.target} to the 1st percentile of size factors across all cells involved in the analysis,
#' but this is only appropriate if the resulting expression values are not compared across different \code{normalizeCounts} calls.
#' To obtain expression values that are comparable across different \code{normalizeCounts} calls
#' (e.g., in \code{\link[scran]{modelGeneVarWithSpikes}} or \code{\link[batchelor]{multiBatchNorm}}),
#' \code{down_target} should be manually set to a constant target value that can be considered a low size factor in every call.
#'
#' @return
#' A numeric matrix-like object containing normalized expression values, possibly transformed according to \code{transform}.
#' This has the same dimensions as \code{x}, unless \code{subset.row} is specified and \code{normalize.all=FALSE}.
#'
#' @author Aaron Lun
#'
#' @seealso
#' \code{\link{logNormCounts}}, which wraps this function for convenient use with SingleCellExperiment instances.
#'
#' \code{\link{librarySizeFactors}}, to compute the default size factors.
#'
#' \code{\link{downsampleMatrix}}, to perform the downsampling.
#' @examples
#' example_sce <- mockSCE()
#'
#' # Standard scaling + log-transformation:
#' normed <- normalizeCounts(example_sce)
#' normed[1:5,1:5]
#'
#' # Scaling without transformation:
#' normed <- normalizeCounts(example_sce, log=FALSE)
#' normed[1:5,1:5]
#'
#' # Downscaling with transformation:
#' normed <- normalizeCounts(example_sce, downsample=TRUE)
#' normed[1:5,1:5]
#'
#' # Using custom size factors:
#' with.meds <- computeMedianFactors(example_sce)
#' normed <- normalizeCounts(with.meds)
#' normed[1:5,1:5]
#'
#' @name normalizeCounts
NULL
#' @export
#' @rdname normalizeCounts
setGeneric("normalizeCounts", function(x, ...) standardGeneric("normalizeCounts"))
#' @export
#' @rdname normalizeCounts
#' @importFrom BiocParallel SerialParam
setMethod("normalizeCounts", "ANY", function(x, size.factors=NULL,
log=NULL, transform=c("log", "none", "asinh"), pseudo.count=1,
center.size.factors=TRUE, subset.row=NULL, normalize.all=FALSE,
downsample=FALSE, down.target=NULL, down.prop=0.01, BPPARAM=SerialParam(),
size_factors=NULL, pseudo_count=NULL, center_size_factors=NULL,
subset_row=NULL, down_target=NULL, down_prop=NULL)
{
subset.row <- .replace(subset.row, subset_row)
size.factors <- .replace(size.factors, size_factors)
center.size.factors <- .replace(center.size.factors, center_size_factors)
down.target <- .replace(down.target, down_target)
down.prop <- .replace(down.prop, down_prop)
pseudo.count <- .replace(pseudo.count, pseudo_count)
if (!is.null(subset.row) && !normalize.all) {
x <- x[subset.row,,drop=FALSE]
subset.row <- NULL
}
if (nrow(x)==0L) {
return(x + 0) # coerce to numeric.
}
size.factors <- .get_default_sizes(x, size.factors, center.size.factors, BPPARAM=BPPARAM, subset.row=subset.row)
if (length(size.factors)!=ncol(x)) {
stop("number of size factors does not equal 'ncol(x)'")
}
if (!all(is.finite(size.factors) & size.factors > 0)) {
stop("size factors should be positive")
}
if (downsample) {
down.out <- .downsample_counts(x, size.factors, down.prop=down.prop, down.target=down.target)
x <- down.out$x
size.factors <- down.out$size.factors
}
transform <- .choose_transform(log, match.arg(transform))
.internal_transformer(x, size.factors, transform, pseudo.count)
})
.get_default_sizes <- function(x, size.factors, center.size.factors, ...) {
if (is.null(size.factors)) {
size.factors <- librarySizeFactors(x, ...)
}
.center.size.factors(size.factors, center.size.factors)
}
.center.size.factors <- function(size.factors, center.size.factors) {
if (center.size.factors) {
size.factors <- size.factors/mean(size.factors)
}
size.factors
}
#' @importFrom stats quantile
.downsample_counts <- function(x, size.factors, down.prop, down.target) {
if (is.null(down.target)) {
down.target <- quantile(size.factors, probs=down.prop)
}
down_rate <- pmin(1, down.target/size.factors)
x <- downsampleMatrix(x, down_rate, bycol=TRUE)
size.factors <- size.factors * down_rate/down.target
list(x=x, size.factors=size.factors)
}
.choose_transform <- function(log, transform) {
if (!is.null(log)) {
if (log) {
transform <- "log"
} else {
transform <- "none"
}
}
transform
}
###########################################
#' @export
#' @rdname normalizeCounts
#' @importFrom SummarizedExperiment assay
#' @importClassesFrom SummarizedExperiment SummarizedExperiment
setMethod("normalizeCounts", "SummarizedExperiment", function(x, ..., assay.type="counts", exprs_values=NULL) {
assay.type <- .replace(assay.type, exprs_values)
normalizeCounts(assay(x, assay.type), ...)
})
#' @export
#' @rdname normalizeCounts
#' @importFrom BiocGenerics sizeFactors
#' @importClassesFrom SingleCellExperiment SingleCellExperiment
setMethod("normalizeCounts", "SingleCellExperiment", function(x, size.factors=sizeFactors(x), ...) {
callNextMethod(x=x, size.factors=size.factors, ...)
})
###########################################
setGeneric(".internal_transformer", function(x, ...) standardGeneric(".internal_transformer"))
#' @importFrom Matrix t
setMethod(".internal_transformer", "ANY", function(x, size.factors, transform, pseudo.count) {
# Needs a double-transpose. Oh well.
norm_exprs <- t(t(x) / size.factors)
if (transform=="log") {
if (pseudo.count==1) {
# Preserve DelayedMatrix sparsity, if possible.
norm_exprs <- log1p(norm_exprs)/log(2)
} else {
norm_exprs <- log2(norm_exprs + pseudo.count)
}
} else if (transform=="asinh") {
norm_exprs <- asinh(norm_exprs)/log(2)
}
norm_exprs
})
#' @importClassesFrom Matrix dgTMatrix
setMethod(".internal_transformer", "dgCMatrix", function(x, size.factors, transform, pseudo.count) {
if (transform=="log" && pseudo.count!=1) {
callNextMethod()
} else if (!.check_methods(transform, pseudo.count, class(x), "dgCMatrix")) {
callNextMethod()
} else {
.transform_sparse(x, rep(size.factors, diff(x@p)), transform)
}
})
#' @importClassesFrom Matrix dgTMatrix
setMethod(".internal_transformer", "dgTMatrix", function(x, size.factors, transform, pseudo.count) {
if (transform=="log" && pseudo.count!=1) {
callNextMethod()
} else if (!.check_methods(transform, pseudo.count, class(x), "dgTMatrix")) {
callNextMethod()
} else {
.transform_sparse(x, size.factors[x@j+1L], transform)
}
})
.transform_sparse <- function(x, expanded_sf, transform) {
x@x <- x@x/expanded_sf
if (transform=="log") {
x@x <- log1p(x@x)/log(2)
} else if (transform=="asinh") {
x@x <- asinh(x@x)/log(2)
}
x
}
.check_methods <- function(transform, pseudo.count, actual, expected)
# We want to check whether it is legal to apply this operation to dgCMatrices,
# as the various methods may have side-effects that are omitted by direct
# slot manipulation. We do so by verifying that the methods are the same as
# the base methods (and thus direct slot modification is equivalent).
{
if (actual != expected) {
to.check <- c("/", "t")
if (transform=="log") {
if (pseudo.count==1) {
to.check <- c(to.check, "log1p")
} else {
to.check <- c(to.check, "log", "+")
}
} else if (transform=="asinh") {
to.check <- c(to.check, "asinh")
}
for (generic in to.check) {
left <- selectMethod(generic, actual)
left <- as(left, "function")
right <- selectMethod(generic, expected)
right <- as(right, "function")
if (!identical(left, right)) {
return(FALSE)
}
}
}
TRUE
}
|