1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
## ---- echo=FALSE, results="hide"----------------------------------------------
knitr::opts_chunk$set(error=FALSE, warning=FALSE, message=FALSE)
library(BiocStyle)
set.seed(10918)
## -----------------------------------------------------------------------------
library(scRNAseq)
sce <- ZeiselBrainData()
library(scuttle)
sce <- quickPerCellQC(sce, subsets=list(Mito=grep("mt-", rownames(sce))),
sub.fields=c("subsets_Mito_percent", "altexps_ERCC_percent"))
sce
## ---- echo=FALSE--------------------------------------------------------------
# Make the damn thing sparse for speed.
counts(sce) <- as(counts(sce), "dgCMatrix")
## -----------------------------------------------------------------------------
summary(librarySizeFactors(sce))
## -----------------------------------------------------------------------------
summary(geometricSizeFactors(sce))
## -----------------------------------------------------------------------------
summary(medianSizeFactors(sce))
## -----------------------------------------------------------------------------
sizeFactors(sce) <- librarySizeFactors(sce)
## -----------------------------------------------------------------------------
sce <- computeLibraryFactors(sce)
summary(sizeFactors(sce))
## -----------------------------------------------------------------------------
library(scran)
clusters <- quickCluster(sce)
sce <- computePooledFactors(sce, clusters=clusters)
summary(sizeFactors(sce))
## -----------------------------------------------------------------------------
sce <- computePooledFactors(sce, clusters=sce$level1class)
summary(sizeFactors(sce))
## -----------------------------------------------------------------------------
sce2 <- computeSpikeFactors(sce, "ERCC")
summary(sizeFactors(sce2))
## -----------------------------------------------------------------------------
sce <- logNormCounts(sce)
assayNames(sce)
## -----------------------------------------------------------------------------
assay(sce, "normed") <- normalizeCounts(sce, log=FALSE,
size.factors=runif(ncol(sce)), pseudo.count=1.5)
## -----------------------------------------------------------------------------
assay(sce, "cpm") <- calculateCPM(sce)
## -----------------------------------------------------------------------------
sessionInfo()
|