1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412
|
# This tests out the methods related to the deconvolution method.
# require(scuttle); require(testthat); source("test-pool-size-factors.R")
ncells <- 200
ngenes <- 1000
set.seed(20000)
test_that("pooledSizeFactors work correctly on trivial examples", {
count.sizes <- rnbinom(ncells, mu=100, size=5)
dummy <- matrix(count.sizes, ncol=ncells, nrow=ngenes, byrow=TRUE)
expect_warning(out <- pooledSizeFactors(dummy))
expect_equal(out, count.sizes/mean(count.sizes))
# Adding some DE genes.
count.sizes <- rnbinom(ncells, mu=100, size=5)
dummy <- matrix(count.sizes, ncol=ncells, nrow=ngenes, byrow=TRUE)
is.de <- sample(ngenes, 100)
dummy[is.de,] <- rnbinom(ncells*length(is.de), mu=100, size=1)
expect_warning(out <- pooledSizeFactors(dummy))
expect_equal(out, count.sizes/mean(count.sizes))
count.sizes <- rnbinom(ncells, mu=100, size=5)
dummy <- matrix(count.sizes, ncol=ncells, nrow=ngenes, byrow=TRUE)
is.de <- sample(ngenes, 400)
dummy[is.de,] <- rnbinom(ncells*length(is.de), mu=100, size=1)
expect_warning(out <- pooledSizeFactors(dummy))
expect_equal(out, count.sizes/mean(count.sizes))
})
set.seed(20001)
test_that("ring construction is correct", {
lib.sizes <- runif(100)
out <- scuttle:::.generateSphere(lib.sizes)
r <- rank(lib.sizes)
expect_identical(r[out][1:50], 1:50*2-1L) # All odd ranks
expect_identical(r[out][51:100], 50:1*2) # All even ranks
expect_identical(r[out][1:100], r[out][101:200]) # Repeated for easy windowing
lib.sizes <- runif(101)
out <- scuttle:::.generateSphere(lib.sizes)
r <- rank(lib.sizes)
expect_identical(r[out][1:51], 1:51*2-1L) # All odd ranks
expect_identical(r[out][52:101], 50:1*2) # All even ranks
expect_identical(r[out][1:101], r[out][102:202]) # Repeated for easy windowing
})
coreCheck <- function(x, sphere, pool.sizes)
# Mocking up the core function for creating the linear system.
{
x <- t(t(x)/colSums(x))
ave.cell <- rowMeans(x)
# Manually running through these.
all.mat <- all.vals <- vector("list", sum(pool.sizes)*ncells)
i <- 1L
for (s in pool.sizes) {
for (w in seq_len(ncells)) {
chosen <- sphere[w+seq_len(s)-1L]
current <- integer(ncells)
current[chosen] <- 1L
all.mat[[i]] <- current
ratios <- rowSums(x[,chosen,drop=FALSE])/ave.cell
all.vals[[i]] <- median(ratios)
i <- i+1L
}
}
# Adding the low weight additional equations.
extra.mat <- diag(ncells)*sqrt(scuttle:::LOWWEIGHT)
extra.val <- rep(sqrt(scuttle:::LOWWEIGHT) / sum(ave.cell), ncells)
final.mat <- rbind(do.call(rbind, all.mat), extra.mat)
final.val <- c(unlist(all.vals), extra.val)
core <- scuttle:::.create_linear_system(x, ave.cell=ave.cell, sphere=sphere, pool.sizes=pool.sizes)
final.mat <- as(final.mat, "dgCMatrix")
expect_equal(final.mat, core$design)
expect_equal(final.val, core$output)
}
set.seed(20003)
test_that("construction of the linear system agrees with a reference implementation", {
pool.sizes <- seq(20, 100, 5)
ngenes <- 250
x <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
sphere <- scuttle:::.generateSphere(runif(ncells))
coreCheck(x, sphere=sphere, pool.sizes=pool.sizes)
# Repeating with even numbers of genes and no ties to check the median calculation.
x <- matrix(rgamma(ngenes*ncells, 10, 10), nrow=ngenes, ncol=ncells)
sphere <- scuttle:::.generateSphere(runif(ncells))
coreCheck(x, sphere=sphere, pool.sizes=pool.sizes)
# Repeating with odd numbers of genes and no ties.
x <- matrix(rgamma((ngenes+1)*ncells, 10, 10), nrow=ngenes+1, ncol=ncells)
sphere <- scuttle:::.generateSphere(runif(ncells))
coreCheck(x, sphere=sphere, pool.sizes=pool.sizes)
})
####################################################################################################
library(Matrix)
sumInR <- function(x, sizes, center=TRUE, min.mean=0)
# Creating a quick R implementation for comparison.
{
keep <- scuttle::calculateAverage(x) >= pmax(1e-8, min.mean)
lib.sizes <- colSums(x)
x <- t(t(x)/lib.sizes)
x <- x[keep,,drop=FALSE]
ref <- rowMeans(x)
ncells <- length(lib.sizes)
o <- scuttle:::.generateSphere(lib.sizes)
all.mat <- all.vals <- vector("list", sum(sizes)*ncells)
# Running the core function directly.
core <- scuttle:::.create_linear_system(x, ave.cell=ref, sphere=o, pool.sizes=sizes)
final.mat <- core$design
final.val <- core$output
nf <- Matrix::solve(Matrix::qr(final.mat), final.val)
nf <- as.numeric(nf)
sf <- nf * lib.sizes
if (center) {
sf <- sf/mean(sf)
}
return(sf)
}
set.seed(20004)
test_that("pooledSizeFactors agrees with a reference implementation", {
ngenes2 <- 200
x <- matrix(rpois(ngenes2*ncells, lambda=10), nrow=ngenes2, ncol=ncells)
sizes <- seq(20, 100, 5)
ref <- sumInR(x, sizes)
obs <- pooledSizeFactors(x, sizes=sizes, min.mean=0)
expect_equal(ref, obs)
# Works if we throw in some zeroes throughout, to test the default filtering.
x <- matrix(rpois(ncells*ngenes2, lambda=10), nrow=ngenes2, ncol=ncells)
x[sample(nrow(x), 100),] <- 0L
ref <- sumInR(x, sizes)
obs <- pooledSizeFactors(x, sizes=sizes, min.mean=0)
expect_equal(ref, obs)
# Works with subsetting.
x <- matrix(rpois(ncells*ngenes2, lambda=10), nrow=ngenes2, ncol=ncells)
subset.row <- sample(nrow(x), 100)
obs <- pooledSizeFactors(x, subset.row=subset.row, sizes=sizes, min.mean=0)
ref <- pooledSizeFactors(x[subset.row,], sizes=sizes, min.mean=0)
expect_equal(ref, obs)
})
set.seed(20005)
test_that("pooledSizeFactors correctly ignores low-abundance genes", {
dummy <- matrix(rpois(ngenes*ncells, lambda=seq_len(ngenes)/ngenes*2), nrow=ngenes, ncol=ncells)
sizes <- seq(20, 100, 5)
# Can't subset 'dummy' directly for testing, as that would change the library sizes.
outA <- pooledSizeFactors(dummy, min.mean=0.5, sizes=sizes)
expect_equal(outA, sumInR(dummy, sizes=sizes, min.mean=0.5))
outB <- pooledSizeFactors(dummy, min.mean=1, sizes=sizes)
expect_equal(outB, sumInR(dummy, sizes=sizes, min.mean=1))
expect_false(isTRUE(all.equal(outA, outB))) # ensure it's not trivial equality.
expect_equal(scuttle::calculateAverage(dummy), colMeans(t(dummy)/colSums(dummy)) * mean(colSums(dummy))) # checking the calculation.
# Interacts properly with the subsetting.
out <- pooledSizeFactors(dummy, min.mean=1, subset.row=1:500, sizes=sizes)
expect_equal(out, sumInR(dummy[1:500,], sizes=sizes, min.mean=1))
# Behaves properly with auto-selection of min.mean.
expect_identical(pooledSizeFactors(dummy, sizes=sizes), pooledSizeFactors(dummy, min.mean=0.1, sizes=sizes)) # UMI threshold
expect_equal(pooledSizeFactors(dummy*100, sizes=sizes), pooledSizeFactors(dummy, min.mean=1/100, sizes=sizes)) # read threshold
})
set.seed(200051)
test_that("pooledSizeFactors responds to scaling requests", {
truth <- runif(ncells, 0.5, 1.5)
dummy <- matrix(rpois(ngenes*ncells, lambda=truth), nrow=ngenes, ncol=ncells, byrow=TRUE)
outA <- pooledSizeFactors(dummy, min.mean=0, scaling=NULL)
outB <- pooledSizeFactors(dummy, min.mean=0, scaling=scuttle::librarySizeFactors(dummy))
expect_equal(outA, outB)
outC <- pooledSizeFactors(dummy, min.mean=0, scaling=truth)
expect_false(isTRUE(all.equal(outA, outC)))
# Matching it to what is expected.
truth.order <- 1 + rank(truth)/1e10 # ensuring the sphere order is the same.
outD <- pooledSizeFactors(t(t(dummy)/(truth/mean(truth))), min.mean=0, scaling=truth.order)
outD <- outD * truth
expect_equal(outD/mean(outD), outC/mean(outC))
# Subsetted properly with clusters.
clusters <- gl(2, ncells/2)
outA <- pooledSizeFactors(dummy, clusters=clusters, min.mean=0, scaling=NULL)
outB <- pooledSizeFactors(dummy, clusters=clusters, min.mean=0, scaling=scuttle::librarySizeFactors(dummy))
expect_equal(outA, outB)
# Throws upon silly inputs.
expect_error(pooledSizeFactors(dummy, min.mean=0, scaling=1), "should be equal")
})
####################################################################################################
set.seed(20006)
test_that("pooledSizeFactors behaves correctly with clustering", {
dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
clusters <- rep(1:2, 100)
sizes <- seq(20, 100, 5)
obs <- pooledSizeFactors(dummy, sizes=sizes, cluster=clusters, min.mean=0, ref.clust=1)
ref1 <- sumInR(dummy[,clusters==1], sizes, center=FALSE) # Avoid centering, as this destroys relative information.
ref2 <- sumInR(dummy[,clusters==2], sizes, center=FALSE)
adj <- t(t(dummy)/colSums(dummy))
pseudo1 <- rowMeans(adj[,clusters==1])
pseudo2 <- rowMeans(adj[,clusters==2])
ref2 <- ref2*median(pseudo2/pseudo1)
ref <- numeric(ncells)
ref[clusters==1] <- ref1
ref[clusters==2] <- ref2
ref <- ref/mean(ref)
expect_equal(ref, obs)
})
set.seed(200061)
test_that("pooledSizeFactors behaves correctly with clustering and a mean threshold", {
ldummy <- matrix(rpois(ncells*ngenes, lambda=1), nrow=ngenes, ncol=ncells)
clusters <- rep(1:2, 100)
sizes <- seq(20, 100, 5)
l1 <- ldummy[,clusters==1]
l2 <- ldummy[,clusters==2]
obs <- pooledSizeFactors(ldummy, sizes=sizes, cluster=clusters, min.mean=1, ref.clust=1)
ref1 <- sumInR(l1, sizes, center=FALSE, min.mean=1)
ref2 <- sumInR(l2, sizes, center=FALSE, min.mean=1)
adj1 <- t(t(l1)/colSums(l1))
adj2 <- t(t(l2)/colSums(l2))
pseudo1 <- rowMeans(adj1)
pseudo2 <- rowMeans(adj2)
ave1 <- scuttle::calculateAverage(l1)
ave2 <- scuttle::calculateAverage(l2)
grand <- scuttle::calculateAverage(cbind(ave1, ave2))
expect_equal(grand, (ave1/sum(ave1) + ave2/sum(ave2))/2 * (sum(ave1) + sum(ave2))/2) # check calculation.
keep <- grand >= 1 # The grand mean applies during re-scaling across clusters.
ref2 <- ref2*median(pseudo2[keep]/pseudo1[keep])
ref <- numeric(ncells)
ref[clusters==1] <- ref1
ref[clusters==2] <- ref2
ref <- ref/mean(ref)
expect_equal(ref, obs)
})
set.seed(20007)
test_that("pooledSizeFactors correctly subsets 'sizes' for small clusters", {
# Trying with not-quite-enough cells in one cluster.
dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
clusters <- rep(1:2, c(80, 120))
sizes <- seq(20, 100, 5)
obs <- pooledSizeFactors(dummy[,clusters==1], sizes=sizes, min.mean=0)
ref1 <- sumInR(dummy[,clusters==1], sizes[sizes<=sum(clusters==1)], center=FALSE)
expect_equal(ref1/mean(ref1), obs)
# Ensure that second cluster isn't affected by subsetting of sizes.
obs <- pooledSizeFactors(dummy, sizes=sizes, cluster=clusters, min.mean=0)
ref2 <- sumInR(dummy[,clusters==2], sizes, center=FALSE)
adj <- t(t(dummy)/colSums(dummy))
pseudo1 <- rowMeans(adj[,clusters==1])
pseudo2 <- rowMeans(adj[,clusters==2])
ref2 <- ref2 * median(pseudo2/pseudo1)
ref <- numeric(ncells)
ref[clusters==1] <- ref1
ref[clusters==2] <- ref2
ref <- ref/mean(ref)
expect_equal(ref, obs)
# Degrades to library size normalization.
subdummy <- dummy[,1:20]
expect_equal(
pooledSizeFactors(subdummy, sizes=100L, min.mean=0),
scuttle::librarySizeFactors(subdummy)
)
})
set.seed(20008)
test_that("pooledSizeFactors correctly limits cluster sizes", {
# Checking that it does the job inside the function.
dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
obs <- pooledSizeFactors(dummy, max.cluster.size=100)
expect_equal(obs, pooledSizeFactors(dummy, clusters=rep(1:2, length.out=ncol(dummy))))
# Checking that the size-capping function works.
clusters <- sample(1:5, 51, p=1:5, replace=TRUE)
out <- scuttle:::.limit_cluster_size(clusters, 10)
expect_true(all(table(out) <= 10L))
expect_false(identical(out, clusters))
expect_true(length(unique(paste0(clusters, out)))==length(unique(out))) # nested
# Checking that it works with factors.
clusters <- factor(integer(100))
out <- scuttle:::.limit_cluster_size(clusters, 6)
expect_true(all(table(out) <= 6L))
expect_false(identical(out, clusters))
expect_true(length(unique(paste0(clusters, out)))==length(unique(out))) # nested
# No-ops.
clusters <- sample(1:5, 51, p=1:5, replace=TRUE)
out <- scuttle:::.limit_cluster_size(clusters, 100)
expect_identical(out, clusters)
})
set.seed(20009)
test_that("pooledSizeFactors is correct with clustering in majority-DE cases", {
ncells <- 600
ngenes <- 200
count.sizes <- rnbinom(ncells, mu=100, size=5)
multiplier <- seq_len(ngenes)/100
dummy <- outer(multiplier, count.sizes)
# Most genes (120 out of 200) are DE in at least one cluster.
known.clusters <- sample(3, ncells, replace=TRUE)
dummy[1:40,known.clusters==1L] <- 0
dummy[41:80,known.clusters==2L] <- 0
dummy[81:120,known.clusters==3L] <- 0
out <- pooledSizeFactors(dummy, cluster=known.clusters)
expect_equal(out, count.sizes/mean(count.sizes)) # Even though there is a majority of DE, each pair of clusters is still okay.
out1 <- pooledSizeFactors(dummy, cluster=known.clusters, ref=1)
expect_equal(out, out1)
out2 <- pooledSizeFactors(dummy, cluster=known.clusters, ref=2)
expect_equal(out, out2)
out3 <- pooledSizeFactors(dummy, cluster=known.clusters, ref=3)
expect_equal(out, out3)
expect_error(pooledSizeFactors(dummy, cluster=as.character(known.clusters), ref="1"), NA) # works with strings
expect_error(pooledSizeFactors(dummy, cluster=known.clusters, ref="0"), "'ref.clust' not in 'clusters'")
})
set.seed(20010)
test_that("pooledSizeFactors gracefully handles majority zeroes during rescaling", {
dummy <- matrix(0, nrow=1000, ncol=200)
dummy[1:10,1:100] <- 1
dummy[10+1:10,100+1:100] <- 2
known.clusters <- gl(2, 100)
expect_warning(out <- pooledSizeFactors(dummy, cluster=known.clusters), "not strictly positive")
expect_equal(out, as.numeric(known.clusters)/1.5)
})
####################################################################################################
set.seed(20010)
test_that("computePooledFactors works on SingleCellExperiment objects", {
dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
rownames(dummy) <- paste0("X", seq_len(ngenes))
X <- SingleCellExperiment(list(counts=dummy))
out <- computePooledFactors(X)
expect_equal(unname(sizeFactors(out)), pooledSizeFactors(dummy))
})
set.seed(20011)
test_that("setting positive=TRUE behaves properly", {
lambda <- c(rep(1e-2, 100), 2^rnorm(200))
dummy <- matrix(rpois(length(lambda)*ngenes, lambda=lambda), nrow=ngenes, ncol=length(lambda), byrow=TRUE)
expect_warning(out <- pooledSizeFactors(dummy), "non-positive")
expect_true(all(out > 0))
expect_warning(out2 <- pooledSizeFactors(dummy, positive=FALSE), "non-positive")
expect_true(any(out2 < 0))
okay <- out2 > 0
expect_equal(out[okay]/mean(out[okay]), out2[okay]/mean(out2[okay]))
})
set.seed(200111)
test_that("pooledSizeFactors works properly on alternative representations", {
library(Matrix)
X <- as(matrix(rpois(100000, lambda=1), ncol=100), "dgCMatrix")
X_ <- as.matrix(X)
library(DelayedArray)
Y <- DelayedArray(X_)
sf1 <- pooledSizeFactors(X_, min.mean=0)
sf2 <- pooledSizeFactors(X, min.mean=0)
expect_equal(sf1, sf2)
sf2 <- pooledSizeFactors(Y, min.mean=0)
expect_equal(sf1, sf2)
})
set.seed(20012)
test_that("pooledSizeFactors throws errors correctly", {
dummy <- matrix(rpois(ncells*ngenes, lambda=10), nrow=ngenes, ncol=ncells)
expect_error(pooledSizeFactors(dummy[,0,drop=FALSE]), "zero cells in one of the clusters")
expect_error(pooledSizeFactors(dummy[0,,drop=FALSE]), "cells should have non-zero library sizes")
expect_error(pooledSizeFactors(dummy, sizes=c(10, 10, 20)), "'sizes' are not unique")
expect_error(pooledSizeFactors(dummy, clusters=integer(0)), "'ncol(x)' is not equal to 'length(clusters)'", fixed=TRUE)
})
|