File: test-pool-size-factors.R

package info (click to toggle)
r-bioc-scuttle 1.8.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 888 kB
  • sloc: cpp: 508; sh: 7; makefile: 2
file content (412 lines) | stat: -rw-r--r-- 16,409 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
# This tests out the methods related to the deconvolution method.
# require(scuttle); require(testthat); source("test-pool-size-factors.R")

ncells <- 200
ngenes <- 1000

set.seed(20000)
test_that("pooledSizeFactors work correctly on trivial examples", {
    count.sizes <- rnbinom(ncells, mu=100, size=5)
    dummy <- matrix(count.sizes, ncol=ncells, nrow=ngenes, byrow=TRUE)
    expect_warning(out <- pooledSizeFactors(dummy))
    expect_equal(out, count.sizes/mean(count.sizes))

    # Adding some DE genes.
    count.sizes <- rnbinom(ncells, mu=100, size=5)
    dummy <- matrix(count.sizes, ncol=ncells, nrow=ngenes, byrow=TRUE)
    is.de <- sample(ngenes, 100)
    dummy[is.de,] <- rnbinom(ncells*length(is.de), mu=100, size=1)
    expect_warning(out <- pooledSizeFactors(dummy))
    expect_equal(out, count.sizes/mean(count.sizes))

    count.sizes <- rnbinom(ncells, mu=100, size=5)
    dummy <- matrix(count.sizes, ncol=ncells, nrow=ngenes, byrow=TRUE)
    is.de <- sample(ngenes, 400)
    dummy[is.de,] <- rnbinom(ncells*length(is.de), mu=100, size=1)
    expect_warning(out <- pooledSizeFactors(dummy))
    expect_equal(out, count.sizes/mean(count.sizes))
})

set.seed(20001)
test_that("ring construction is correct", {
    lib.sizes <- runif(100)
    out <- scuttle:::.generateSphere(lib.sizes)
    r <- rank(lib.sizes)
    expect_identical(r[out][1:50], 1:50*2-1L) # All odd ranks
    expect_identical(r[out][51:100], 50:1*2) # All even ranks
    expect_identical(r[out][1:100], r[out][101:200]) # Repeated for easy windowing

    lib.sizes <- runif(101)
    out <- scuttle:::.generateSphere(lib.sizes)
    r <- rank(lib.sizes)
    expect_identical(r[out][1:51], 1:51*2-1L) # All odd ranks
    expect_identical(r[out][52:101], 50:1*2) # All even ranks
    expect_identical(r[out][1:101], r[out][102:202]) # Repeated for easy windowing
})

coreCheck <- function(x, sphere, pool.sizes)
# Mocking up the core function for creating the linear system.
{
    x <- t(t(x)/colSums(x))
    ave.cell <- rowMeans(x)

    #  Manually running through these.
    all.mat <- all.vals <- vector("list", sum(pool.sizes)*ncells)
    i <- 1L
    for (s in pool.sizes) {
        for (w in seq_len(ncells)) {
            chosen <- sphere[w+seq_len(s)-1L]

            current <- integer(ncells)
            current[chosen] <- 1L
            all.mat[[i]] <- current

            ratios <- rowSums(x[,chosen,drop=FALSE])/ave.cell
            all.vals[[i]] <- median(ratios)
            i <- i+1L
        }
    }

    # Adding the low weight additional equations.
    extra.mat <- diag(ncells)*sqrt(scuttle:::LOWWEIGHT)
    extra.val <- rep(sqrt(scuttle:::LOWWEIGHT) / sum(ave.cell), ncells)
    final.mat <- rbind(do.call(rbind, all.mat), extra.mat)
    final.val <- c(unlist(all.vals), extra.val)

    core <- scuttle:::.create_linear_system(x, ave.cell=ave.cell, sphere=sphere, pool.sizes=pool.sizes)
    final.mat <- as(final.mat, "dgCMatrix")
    expect_equal(final.mat, core$design)
    expect_equal(final.val, core$output)
}

set.seed(20003)
test_that("construction of the linear system agrees with a reference implementation", {
    pool.sizes <- seq(20, 100, 5)
    ngenes <- 250

    x <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
    sphere <- scuttle:::.generateSphere(runif(ncells))
    coreCheck(x, sphere=sphere, pool.sizes=pool.sizes)

    # Repeating with even numbers of genes and no ties to check the median calculation.
    x <- matrix(rgamma(ngenes*ncells, 10, 10), nrow=ngenes, ncol=ncells)
    sphere <- scuttle:::.generateSphere(runif(ncells))
    coreCheck(x, sphere=sphere, pool.sizes=pool.sizes)

    # Repeating with odd numbers of genes and no ties.
    x <- matrix(rgamma((ngenes+1)*ncells, 10, 10), nrow=ngenes+1, ncol=ncells)
    sphere <- scuttle:::.generateSphere(runif(ncells))
    coreCheck(x, sphere=sphere, pool.sizes=pool.sizes)
})

####################################################################################################

library(Matrix)
sumInR <- function(x, sizes, center=TRUE, min.mean=0)
# Creating a quick R implementation for comparison.
{
    keep <- scuttle::calculateAverage(x) >= pmax(1e-8, min.mean)
    lib.sizes <- colSums(x)
    x <- t(t(x)/lib.sizes)
    x <- x[keep,,drop=FALSE]
    ref <- rowMeans(x)

    ncells <- length(lib.sizes)
    o <- scuttle:::.generateSphere(lib.sizes)
    all.mat <- all.vals <- vector("list", sum(sizes)*ncells)

    # Running the core function directly.
    core <- scuttle:::.create_linear_system(x, ave.cell=ref, sphere=o, pool.sizes=sizes)
    final.mat <- core$design
    final.val <- core$output

    nf <- Matrix::solve(Matrix::qr(final.mat), final.val)
    nf <- as.numeric(nf)
    sf <- nf * lib.sizes
    if (center) {
        sf <- sf/mean(sf)
    }
    return(sf)
}

set.seed(20004)
test_that("pooledSizeFactors agrees with a reference implementation", {
    ngenes2 <- 200
    x <- matrix(rpois(ngenes2*ncells, lambda=10), nrow=ngenes2, ncol=ncells)
    sizes <- seq(20, 100, 5)
    ref <- sumInR(x, sizes)
    obs <- pooledSizeFactors(x, sizes=sizes, min.mean=0)
    expect_equal(ref, obs)

    # Works if we throw in some zeroes throughout, to test the default filtering.
    x <- matrix(rpois(ncells*ngenes2, lambda=10), nrow=ngenes2, ncol=ncells)
    x[sample(nrow(x), 100),] <- 0L
    ref <- sumInR(x, sizes)
    obs <- pooledSizeFactors(x, sizes=sizes, min.mean=0)
    expect_equal(ref, obs)

    # Works with subsetting.
    x <- matrix(rpois(ncells*ngenes2, lambda=10), nrow=ngenes2, ncol=ncells)
    subset.row <- sample(nrow(x), 100)
    obs <- pooledSizeFactors(x, subset.row=subset.row, sizes=sizes, min.mean=0)
    ref <- pooledSizeFactors(x[subset.row,], sizes=sizes, min.mean=0)
    expect_equal(ref, obs)
})

set.seed(20005)
test_that("pooledSizeFactors correctly ignores low-abundance genes", {
    dummy <- matrix(rpois(ngenes*ncells, lambda=seq_len(ngenes)/ngenes*2), nrow=ngenes, ncol=ncells)
    sizes <- seq(20, 100, 5)

    # Can't subset 'dummy' directly for testing, as that would change the library sizes.
    outA <- pooledSizeFactors(dummy, min.mean=0.5, sizes=sizes)
    expect_equal(outA, sumInR(dummy, sizes=sizes, min.mean=0.5))
    outB <- pooledSizeFactors(dummy, min.mean=1, sizes=sizes)
    expect_equal(outB, sumInR(dummy, sizes=sizes, min.mean=1))

    expect_false(isTRUE(all.equal(outA, outB))) # ensure it's not trivial equality.
    expect_equal(scuttle::calculateAverage(dummy), colMeans(t(dummy)/colSums(dummy)) * mean(colSums(dummy))) # checking the calculation.

    # Interacts properly with the subsetting.
    out <- pooledSizeFactors(dummy, min.mean=1, subset.row=1:500, sizes=sizes)
    expect_equal(out, sumInR(dummy[1:500,], sizes=sizes, min.mean=1))

    # Behaves properly with auto-selection of min.mean.
    expect_identical(pooledSizeFactors(dummy, sizes=sizes), pooledSizeFactors(dummy, min.mean=0.1, sizes=sizes)) # UMI threshold
    expect_equal(pooledSizeFactors(dummy*100, sizes=sizes), pooledSizeFactors(dummy, min.mean=1/100, sizes=sizes)) # read threshold
})

set.seed(200051)
test_that("pooledSizeFactors responds to scaling requests", {
    truth <- runif(ncells, 0.5, 1.5)
    dummy <- matrix(rpois(ngenes*ncells, lambda=truth), nrow=ngenes, ncol=ncells, byrow=TRUE)

    outA <- pooledSizeFactors(dummy, min.mean=0, scaling=NULL)
    outB <- pooledSizeFactors(dummy, min.mean=0, scaling=scuttle::librarySizeFactors(dummy))
    expect_equal(outA, outB)

    outC <- pooledSizeFactors(dummy, min.mean=0, scaling=truth)
    expect_false(isTRUE(all.equal(outA, outC)))

    # Matching it to what is expected.
    truth.order <- 1 + rank(truth)/1e10 # ensuring the sphere order is the same.
    outD <- pooledSizeFactors(t(t(dummy)/(truth/mean(truth))), min.mean=0, scaling=truth.order)
    outD <- outD * truth
    expect_equal(outD/mean(outD), outC/mean(outC))

    # Subsetted properly with clusters.
    clusters <- gl(2, ncells/2)
    outA <- pooledSizeFactors(dummy, clusters=clusters, min.mean=0, scaling=NULL)
    outB <- pooledSizeFactors(dummy, clusters=clusters, min.mean=0, scaling=scuttle::librarySizeFactors(dummy))
    expect_equal(outA, outB)

    # Throws upon silly inputs.
    expect_error(pooledSizeFactors(dummy, min.mean=0, scaling=1), "should be equal")
})

####################################################################################################

set.seed(20006)
test_that("pooledSizeFactors behaves correctly with clustering", {
    dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
    clusters <- rep(1:2, 100)
    sizes <- seq(20, 100, 5)

    obs <- pooledSizeFactors(dummy, sizes=sizes, cluster=clusters, min.mean=0, ref.clust=1)
    ref1 <- sumInR(dummy[,clusters==1], sizes, center=FALSE) # Avoid centering, as this destroys relative information.
    ref2 <- sumInR(dummy[,clusters==2], sizes, center=FALSE)

    adj <- t(t(dummy)/colSums(dummy))
    pseudo1 <- rowMeans(adj[,clusters==1])
    pseudo2 <- rowMeans(adj[,clusters==2])
    ref2 <- ref2*median(pseudo2/pseudo1)

    ref <- numeric(ncells)
    ref[clusters==1] <- ref1
    ref[clusters==2] <- ref2
    ref <- ref/mean(ref)
    expect_equal(ref, obs)
})

set.seed(200061)
test_that("pooledSizeFactors behaves correctly with clustering and a mean threshold", {
    ldummy <- matrix(rpois(ncells*ngenes, lambda=1), nrow=ngenes, ncol=ncells)
    clusters <- rep(1:2, 100)
    sizes <- seq(20, 100, 5)

    l1 <- ldummy[,clusters==1]
    l2 <- ldummy[,clusters==2]

    obs <- pooledSizeFactors(ldummy, sizes=sizes, cluster=clusters, min.mean=1, ref.clust=1)
    ref1 <- sumInR(l1, sizes, center=FALSE, min.mean=1)
    ref2 <- sumInR(l2, sizes, center=FALSE, min.mean=1)

    adj1 <- t(t(l1)/colSums(l1))
    adj2 <- t(t(l2)/colSums(l2))
    pseudo1 <- rowMeans(adj1)
    pseudo2 <- rowMeans(adj2)

    ave1 <- scuttle::calculateAverage(l1)
    ave2 <- scuttle::calculateAverage(l2)
    grand <- scuttle::calculateAverage(cbind(ave1, ave2))
    expect_equal(grand, (ave1/sum(ave1) + ave2/sum(ave2))/2 * (sum(ave1) + sum(ave2))/2) # check calculation.

    keep <- grand >= 1 # The grand mean applies during re-scaling across clusters.
    ref2 <- ref2*median(pseudo2[keep]/pseudo1[keep])

    ref <- numeric(ncells)
    ref[clusters==1] <- ref1
    ref[clusters==2] <- ref2
    ref <- ref/mean(ref)
    expect_equal(ref, obs)
})

set.seed(20007)
test_that("pooledSizeFactors correctly subsets 'sizes' for small clusters", {
    # Trying with not-quite-enough cells in one cluster.
    dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
    clusters <- rep(1:2, c(80, 120))
    sizes <- seq(20, 100, 5)

    obs <- pooledSizeFactors(dummy[,clusters==1], sizes=sizes, min.mean=0)
    ref1 <- sumInR(dummy[,clusters==1], sizes[sizes<=sum(clusters==1)], center=FALSE)
    expect_equal(ref1/mean(ref1), obs)

    # Ensure that second cluster isn't affected by subsetting of sizes.
    obs <- pooledSizeFactors(dummy, sizes=sizes, cluster=clusters, min.mean=0)
    ref2 <- sumInR(dummy[,clusters==2], sizes, center=FALSE) 
    adj <- t(t(dummy)/colSums(dummy))
    pseudo1 <- rowMeans(adj[,clusters==1])
    pseudo2 <- rowMeans(adj[,clusters==2])
    ref2 <- ref2 * median(pseudo2/pseudo1)

    ref <- numeric(ncells)
    ref[clusters==1] <- ref1
    ref[clusters==2] <- ref2
    ref <- ref/mean(ref)
    expect_equal(ref, obs)

    # Degrades to library size normalization.
    subdummy <- dummy[,1:20]
    expect_equal(
            pooledSizeFactors(subdummy, sizes=100L, min.mean=0),
            scuttle::librarySizeFactors(subdummy)
    )
})

set.seed(20008)
test_that("pooledSizeFactors correctly limits cluster sizes", {
    # Checking that it does the job inside the function.
    dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
    obs <- pooledSizeFactors(dummy, max.cluster.size=100)
    expect_equal(obs, pooledSizeFactors(dummy, clusters=rep(1:2, length.out=ncol(dummy))))

    # Checking that the size-capping function works.
    clusters <- sample(1:5, 51, p=1:5, replace=TRUE)
    out <- scuttle:::.limit_cluster_size(clusters, 10)
    expect_true(all(table(out) <= 10L))
    expect_false(identical(out, clusters))
    expect_true(length(unique(paste0(clusters, out)))==length(unique(out))) # nested

    # Checking that it works with factors.
    clusters <- factor(integer(100))
    out <- scuttle:::.limit_cluster_size(clusters, 6)
    expect_true(all(table(out) <= 6L))
    expect_false(identical(out, clusters))
    expect_true(length(unique(paste0(clusters, out)))==length(unique(out))) # nested

    # No-ops.
    clusters <- sample(1:5, 51, p=1:5, replace=TRUE)
    out <- scuttle:::.limit_cluster_size(clusters, 100)
    expect_identical(out, clusters)
})

set.seed(20009)
test_that("pooledSizeFactors is correct with clustering in majority-DE cases", {
    ncells <- 600
    ngenes <- 200
    count.sizes <- rnbinom(ncells, mu=100, size=5)
    multiplier <- seq_len(ngenes)/100
    dummy <- outer(multiplier, count.sizes)

    # Most genes (120 out of 200) are DE in at least one cluster.
    known.clusters <- sample(3, ncells, replace=TRUE)
    dummy[1:40,known.clusters==1L] <- 0
    dummy[41:80,known.clusters==2L] <- 0
    dummy[81:120,known.clusters==3L] <- 0

    out <- pooledSizeFactors(dummy, cluster=known.clusters)
    expect_equal(out, count.sizes/mean(count.sizes)) # Even though there is a majority of DE, each pair of clusters is still okay.

    out1 <- pooledSizeFactors(dummy, cluster=known.clusters, ref=1)
    expect_equal(out, out1)
    out2 <- pooledSizeFactors(dummy, cluster=known.clusters, ref=2)
    expect_equal(out, out2)
    out3 <- pooledSizeFactors(dummy, cluster=known.clusters, ref=3)
    expect_equal(out, out3)

    expect_error(pooledSizeFactors(dummy, cluster=as.character(known.clusters), ref="1"), NA) # works with strings
    expect_error(pooledSizeFactors(dummy, cluster=known.clusters, ref="0"), "'ref.clust' not in 'clusters'")
})

set.seed(20010)
test_that("pooledSizeFactors gracefully handles majority zeroes during rescaling", {
    dummy <- matrix(0, nrow=1000, ncol=200)
    dummy[1:10,1:100] <- 1
    dummy[10+1:10,100+1:100] <- 2
    known.clusters <- gl(2, 100)

    expect_warning(out <- pooledSizeFactors(dummy, cluster=known.clusters), "not strictly positive")
    expect_equal(out, as.numeric(known.clusters)/1.5)
})

####################################################################################################

set.seed(20010)
test_that("computePooledFactors works on SingleCellExperiment objects", {
    dummy <- matrix(rpois(ngenes*ncells, lambda=10), nrow=ngenes, ncol=ncells)
    rownames(dummy) <- paste0("X", seq_len(ngenes))
    X <- SingleCellExperiment(list(counts=dummy))
    out <- computePooledFactors(X)
    expect_equal(unname(sizeFactors(out)), pooledSizeFactors(dummy))
})

set.seed(20011)
test_that("setting positive=TRUE behaves properly", {
    lambda <- c(rep(1e-2, 100), 2^rnorm(200))
    dummy <- matrix(rpois(length(lambda)*ngenes, lambda=lambda), nrow=ngenes, ncol=length(lambda), byrow=TRUE)
    expect_warning(out <- pooledSizeFactors(dummy), "non-positive")
    expect_true(all(out > 0)) 

    expect_warning(out2 <- pooledSizeFactors(dummy, positive=FALSE), "non-positive")
    expect_true(any(out2 < 0))

    okay <- out2 > 0
    expect_equal(out[okay]/mean(out[okay]), out2[okay]/mean(out2[okay]))    
})

set.seed(200111)
test_that("pooledSizeFactors works properly on alternative representations", {
    library(Matrix)
    X <- as(matrix(rpois(100000, lambda=1), ncol=100), "dgCMatrix")
    X_ <- as.matrix(X)

    library(DelayedArray)
    Y <- DelayedArray(X_)

    sf1 <- pooledSizeFactors(X_, min.mean=0)
    sf2 <- pooledSizeFactors(X, min.mean=0)
    expect_equal(sf1, sf2)
    
    sf2 <- pooledSizeFactors(Y, min.mean=0)
    expect_equal(sf1, sf2)
})

set.seed(20012)
test_that("pooledSizeFactors throws errors correctly", {
    dummy <- matrix(rpois(ncells*ngenes, lambda=10), nrow=ngenes, ncol=ncells)
    expect_error(pooledSizeFactors(dummy[,0,drop=FALSE]), "zero cells in one of the clusters")
    expect_error(pooledSizeFactors(dummy[0,,drop=FALSE]), "cells should have non-zero library sizes")
    expect_error(pooledSizeFactors(dummy, sizes=c(10, 10, 20)), "'sizes' are not unique")
    expect_error(pooledSizeFactors(dummy, clusters=integer(0)), "'ncol(x)' is not equal to 'length(clusters)'", fixed=TRUE)
})