1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
# Test functions for QC calculation.
# library(scuttle); library(testthat); source("setup.R"); source("test-qc-calc.R")
original <- sce
test_that("we can compute standard per-cell QC metrics", {
df <- perCellQCMetrics(original, flatten=FALSE)
expect_identical(rownames(df), colnames(original))
# Testing total metrics for cells.
expect_equal(df$sum, unname(colSums(counts(original))))
expect_equal(df$detected, unname(colSums(counts(original) > 0)))
# Testing percentage metrics for cells.
N <- c(50, 100, 200, 500)
df <- perCellQCMetrics(original, percent.top=N, flatten=FALSE)
for (i in seq_len(ncol(original))) {
cur_counts <- counts(original)[,i]
o <- order(cur_counts, decreasing=TRUE)
lib_size <- sum(cur_counts)
for (x in N) {
chosen <- o[seq_len(x)]
expect_equivalent(df$percent.top[i,as.character(x)], sum(cur_counts[chosen])/lib_size * 100)
}
}
# Flattening works as expected.
flat <- perCellQCMetrics(original, percent.top=N)
for (x in N) {
expect_identical(flat[,paste0("percent.top_", x)], df$percent.top[,as.character(x)])
}
expect_identical(rownames(flat), colnames(original))
})
test_that("we can compute standard QC metrics with subsets", {
ref <- perCellQCMetrics(original, flatten=FALSE)
df <- perCellQCMetrics(original, subsets = list(set1 = 1:20), flatten=FALSE)
expect_identical(df[,1:3], ref[,1:3])
expect_equivalent(df$subsets$set1$sum, colSums(counts(original[1:20,])))
expect_equivalent(df$subsets$set1$detected, colSums(counts(original[1:20,])> 0))
expect_equivalent(df$subsets$set1$percent, df$subsets$set1$sum/df$sum * 100)
# Testing behaviour with multiple feature controls.
multi_controls <- list(controls1 = 1:20, controls2 = rownames(original)[500:1000])
df2 <- perCellQCMetrics(original, subsets = multi_controls, flatten=FALSE)
expect_equivalent(df$subsets$set1, df2$subsets$controls1)
expect_equivalent(df2$subsets$controls2$sum, colSums(counts(original[500:1000,])))
expect_equivalent(df2$subsets$controls2$detected, colSums(counts(original[500:1000,])> 0))
expect_equivalent(df2$subsets$controls2$percent, df2$subsets$controls2$sum/df2$sum * 100)
# Flattening works as expected.
flat <- perCellQCMetrics(original, subsets = list(set1=1:20))
expect_identical(flat$subsets_set1_sum, df$subsets$set1$sum)
})
test_that("perCellQCMetrics works with alternative experiments", {
sce <- original
altExp(sce, "alpha") <- original[1:10,]
altExp(sce, "bravo") <- original[10:20,]
ref <- perCellQCMetrics(original, flatten=FALSE)
df <- perCellQCMetrics(sce, flatten=FALSE)
expect_identical(df[,1:3], ref[,1:3])
for (x in altExpNames(sce)) {
current <- perCellQCMetrics(altExp(sce, x), flatten=FALSE)
expect_identical(df$altexps[[x]]$sum, current$sum)
expect_identical(df$altexps[[x]]$detected, current$detected)
expect_equal(df$altexps[[x]]$percent, current$sum/df$total*100)
}
expect_identical(df$total, df$sum + df$altexps$alpha$sum + df$altexps$bravo$sum)
# Ignores experiments that don't have the requested assay.
copy <- sce
assayNames(altExp(copy, "alpha")) <- "FOO"
ignored <- perCellQCMetrics(copy, use.altexps=NULL)
expect_true(is.null(ignored$altexps_alpha_sum))
expect_false(is.null(ignored$altexps_bravo_sum))
# Flattening works as expected.
flat <- perCellQCMetrics(sce)
expect_identical(flat$altexps_alpha_sum, df$altexps$alpha$sum)
expect_identical(flat$altexps_bravo_detected, df$altexps$bravo$detected)
flat <- perCellQCMetrics(sce, use.altexps="alpha")
expect_identical(flat$altexps_alpha_sum, df$altexps$alpha$sum)
expect_null(flat$altexps_beta_sum)
})
test_that("perCellQCMetrics handles silly inputs", {
expect_error(perCellQCMetrics(original, subsets = list(1:20), flatten=FALSE), "must be named")
# Doesn't choke with no entries.
thing <- perCellQCMetrics(original[0,], flatten=FALSE)
expect_identical(rownames(thing), colnames(original))
expect_true(all(thing$sum==0L))
thing2 <- perCellQCMetrics(original[,0], flatten=FALSE)
expect_identical(nrow(thing2), 0L)
expect_identical(colnames(thing), colnames(thing2))
# Percentage holds at the limit.
df <- perCellQCMetrics(original[1:10,], percent.top=c(50, 100, 200, 500), flatten=FALSE)
expect_true(all(df$percent.top==100))
df <- perCellQCMetrics(original, percent.top=integer(0), flatten=FALSE)
expect_identical(ncol(df$percent.top), 0L)
# Responds to alternative inputs.
blah <- sce
assayNames(blah) <- "whee"
expect_error(perCellQCMetrics(blah, flatten=FALSE), "counts")
expect_error(perCellQCMetrics(blah, assay.type="whee", flatten=FALSE), NA)
})
#######################################################################
# Works for per-feature metrics.
test_that("perFeatureQCMetrics works correctly", {
out <- perFeatureQCMetrics(original, flatten=FALSE)
expect_identical(rownames(out), rownames(original))
expect_equal(out$mean, unname(rowMeans(counts(original))))
expect_equal(out$detected, unname(rowMeans(counts(original) > 0))*100)
})
test_that("we can compute standard QC metrics with cell controls", {
expect_error(perFeatureQCMetrics(original, subsets = list(1:20), flatten=FALSE), "must be named")
df <- perFeatureQCMetrics(original, subsets = list(set1 = 1:20), flatten=FALSE)
sub_counts <- counts(original)[,1:20]
expect_equal(df$subsets$set1$mean, unname(rowMeans(sub_counts)))
expect_equal(df$subsets$set1$detected, unname(rowMeans(sub_counts > 0) * 100))
expect_equal(df$subsets$set1$ratio, df$subsets$set1$mean/df$mean)
# Testing behaviour with multiple cell controls.
multi_controls <- list(controls1 = 1:5, controls2 = 10:20)
df2 <- perFeatureQCMetrics(original, subsets = multi_controls, flatten=FALSE)
expect_equivalent(df2$subsets$controls2$mean, rowMeans(counts(original[,10:20])))
expect_equivalent(df2$subsets$controls2$detected, rowMeans(counts(original[,10:20])> 0)*100)
expect_equivalent(df2$subsets$controls2$ratio, df2$subsets$controls2$mean/df2$mean)
# Flattening works as expected.
flat <- perFeatureQCMetrics(original, subsets = list(set1 = 1:20))
expect_identical(rownames(flat), rownames(original))
expect_identical(flat$subsets_set1_mean, df$subsets$set1$mean)
expect_identical(flat$subsets_set1_ratio, df$subsets$set1$ratio)
})
test_that("perFeatureQCmetrics handles silly inputs", {
expect_error(perFeatureQCMetrics(original, subsets = list(1:20), flatten=FALSE), "must be named")
# Doesn't choke with no entries.
thing <- perFeatureQCMetrics(original[,0], flatten=FALSE)
expect_identical(rownames(thing), rownames(original))
expect_true(all(thing$sum==0L))
thing2 <- perFeatureQCMetrics(original[0,], flatten=FALSE)
expect_identical(nrow(thing2), 0L)
expect_identical(colnames(thing), colnames(thing2))
# Responds to alternative inputs.
blah <- sce
assayNames(blah) <- "whee"
expect_error(perFeatureQCMetrics(blah, flatten=FALSE), "counts")
expect_error(perFeatureQCMetrics(blah, assay.type="whee", flatten=FALSE), NA)
})
#######################################################################
# Responds to special settings:
test_that("we can compute standard QC metrics on sparse counts matrix", {
alt <- original
library(Matrix)
counts(alt) <- as(counts(alt), "dgCMatrix")
expect_equal(perCellQCMetrics(alt, flatten=FALSE), perCellQCMetrics(original, flatten=FALSE))
expect_equal(perFeatureQCMetrics(alt, flatten=FALSE), perFeatureQCMetrics(original, flatten=FALSE))
expect_equal(perCellQCMetrics(alt, subset=list(set=1:10), flatten=FALSE),
perCellQCMetrics(original, subset=list(set=1:10), flatten=FALSE))
expect_equal(perFeatureQCMetrics(alt, subset=list(set=1:10), flatten=FALSE),
perFeatureQCMetrics(original, subset=list(set=1:10), flatten=FALSE))
})
test_that("we can compute standard QC metrics across multiple cores", {
expect_equal(perCellQCMetrics(original, flatten=FALSE),
perCellQCMetrics(original, BPPARAM=safeBPParam(3), flatten=FALSE))
expect_equal(perFeatureQCMetrics(original, flatten=FALSE),
perFeatureQCMetrics(original, BPPARAM=safeBPParam(3), flatten=FALSE))
expect_equal(perCellQCMetrics(original, subset=list(set=1:10), flatten=FALSE),
perCellQCMetrics(original, subset=list(set=1:10), BPPARAM=safeBPParam(3), flatten=FALSE))
expect_equal(perFeatureQCMetrics(original, subset=list(set=1:10), flatten=FALSE),
perFeatureQCMetrics(original, subset=list(set=1:10), BPPARAM=safeBPParam(3), flatten=FALSE))
})
|