1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205
|
# This tests the behaviour of the isOutlier() function.
# library(testthat); library(scuttle); source("test-qc-outlier.R")
set.seed(1000)
test_that("isOutlier works correctly with vanilla applications", {
vals <- c(rnorm(10000), rnorm(100, sd=10))
out <- isOutlier(vals)
# Checking that thresholds are correctly computed.
MAD <- mad(vals)
MED <- median(vals)
lower <- MED - MAD * 3
higher <- MED + MAD * 3
expect_equal(attr(out, "thresholds"), c(lower=lower, higher=higher))
expect_identical(as.logical(out), vals > higher | vals < lower)
out.5 <- isOutlier(vals, nmads=5)
expect_equal(attr(out.5, "thresholds"), c(lower=MED - MAD * 5, higher=MED + MAD * 5))
# Consistent with just lower or higher.
out.L <- isOutlier(vals, type="lower")
out.H <- isOutlier(vals, type="higher")
expect_identical(as.logical(out), out.L | out.H)
expect_equal(attr(out.L, "thresholds"), c(lower=lower, higher=Inf))
expect_equal(as.logical(out.L), vals < lower)
expect_equal(attr(out.H, "thresholds"), c(lower=-Inf, higher=higher))
expect_equal(as.logical(out.H), vals > higher)
})
set.seed(1001)
test_that("isOutlier responds to the minimum difference", {
vals <- c(rnorm(10000), rnorm(100, sd=10))
for (min.diff in c(1, 5, 10)) {
out <- isOutlier(vals, min.diff=min.diff)
# Checking that thresholds are correctly computed.
relative.threshold <- max(min.diff, mad(vals) * 3)
lower <- median(vals) - relative.threshold
higher <- median(vals) + relative.threshold
expect_equal(attr(out, "thresholds"), c(lower=lower, higher=higher))
expect_identical(as.logical(out), vals > higher | vals < lower)
}
})
set.seed(1002)
test_that("isOutlier responds to subsetting for threshold calculations", {
vals <- c(rnorm(10000), rnorm(100, sd=10))
chosen <- sample(length(vals), 1000)
out <- isOutlier(vals, subset=chosen)
out2 <- isOutlier(vals[chosen])
thresholds <- attr(out, "thresholds")
expect_identical(thresholds, attr(out2, "thresholds"))
expect_identical(out[chosen], out2)
expect_identical(as.logical(out), vals < thresholds[1] | vals > thresholds[2])
# NA inputs are automatically subsetted.
vals.NA <- vals
vals.NA[chosen] <- NA
expect_warning(out.NA <- isOutlier(vals.NA), "missing values")
ref.NA <- isOutlier(vals[-chosen])
expect_identical(attr(out.NA, "thresholds"), attr(ref.NA, "thresholds"))
expect_identical(out.NA[-chosen], ref.NA)
expect_true(all(is.na(out.NA[chosen])))
})
set.seed(1003)
test_that("isOutlier responds to request for log-transformation", {
vals <- c(1e-8, 100:200, 1000)
by.log <- isOutlier(vals, log=TRUE)
manual <- isOutlier(log(vals))
expect_identical(as.logical(by.log), as.logical(manual))
# Thresholds are un-adjusted for the log-transformation.
thresh.log <- attr(by.log, "thresholds")
thresh.man <- attr(manual, "thresholds")
expect_equal(thresh.log, exp(thresh.man))
})
set.seed(1004)
test_that("isOutlier responds to batch specification", {
vals <- c(rnorm(10000), rnorm(100, sd=10))
batches <- sample(5, length(vals), replace=TRUE)
out <- isOutlier(vals, batch=batches)
for (b in unique(batches)) {
chosen <- batches==b
current <- isOutlier(vals[chosen])
expect_identical(as.logical(current), as.logical(out[chosen]))
expect_equal(attr(current, "thresholds"), attr(out, "thresholds")[,as.character(b)])
}
# Responds correctly when subset is also specified.
sampled <- sample(length(vals), 1000)
out <- isOutlier(vals, batch=batches, subset=sampled)
for (b in unique(batches)) {
chosen <- intersect(which(batches==b), sampled)
current <- isOutlier(vals[chosen])
expect_identical(as.logical(current), as.logical(out[chosen]))
expect_equal(attr(current, "thresholds"), attr(out, "thresholds")[,as.character(b)])
}
})
set.seed(10041)
test_that("isOutlier thresholds are computed correctly with batch specification", {
vals <- rnorm(1000)
batches <- gl(2, length(vals)/2)
out <- isOutlier(vals, batch=batches)
out1 <- isOutlier(vals[batches==1])
out2 <- isOutlier(vals[batches==2])
expect_equal(attr(out, "thresholds"), cbind(`1`=attr(out1, "thresholds"), `2`=attr(out2, "thresholds")))
expect_identical(as.logical(out), as.logical(c(out1, out2)))
# With log-transformation.
vals <- rgamma(1000, 1, 1)
out <- isOutlier(vals, batch=batches, log=TRUE)
out1 <- isOutlier(vals[batches==1], log=TRUE)
out2 <- isOutlier(vals[batches==2], log=TRUE)
expect_equal(attr(out, "thresholds"), cbind(`1`=attr(out1, "thresholds"), `2`=attr(out2, "thresholds")))
expect_identical(as.logical(out), as.logical(c(out1, out2)))
})
set.seed(10041)
test_that("isOutlier thresholds are computed correctly with sharingness", {
vals <- rnorm(1000)
batches <- gl(2, length(vals)/2)
out <- isOutlier(vals, batch=batches, share.medians=TRUE, share.mads=TRUE)
ref <- isOutlier(vals)
expect_identical(as.logical(out), as.logical(ref))
expect_identical(attr(out, "thresholds")[,1], attr(ref, "thresholds"))
expect_identical(attr(out, "thresholds")[,2], attr(ref, "thresholds"))
out <- isOutlier(vals, batch=batches, share.medians=TRUE)
common.med <- median(vals)
mad1 <- mad(vals[batches==1], center=common.med)
mad2 <- mad(vals[batches==2], center=common.med)
expect_equivalent(attr(out, "thresholds")[,1], common.med + c(-1, 1) * 3 * mad1)
expect_equivalent(attr(out, "thresholds")[,2], common.med + c(-1, 1) * 3 * mad2)
out <- isOutlier(vals, batch=batches, share.mads=TRUE)
med1 <- median(vals[batches==1])
med2 <- median(vals[batches==2])
common.mad <- median(abs(vals - c(med1, med2)[batches])) * formals(mad)$constant
expect_equivalent(attr(out, "thresholds")[,1], med1 + c(-1, 1) * 3 * common.mad)
expect_equivalent(attr(out, "thresholds")[,2], med2 + c(-1, 1) * 3 * common.mad)
})
set.seed(10041)
test_that("isOutlier thresholds correctly recover missing batches", {
vals <- rnorm(1000)
batches <- gl(2, length(vals)/2)
out <- isOutlier(vals, batch=batches, subset=batches==1)
ref <- isOutlier(vals[batches==1])
expect_identical(attr(out, "thresholds")[,1], attr(ref, "thresholds"))
expect_identical(attr(out, "thresholds")[,2], attr(ref, "thresholds"))
out <- isOutlier(vals, batch=batches, subset=batches==1, share.missing=FALSE)
expect_equivalent(out[batches==1], ref)
expect_true(all(is.na(out[batches==2])))
})
set.seed(1005)
test_that("isOutlier handles silly inputs correctly", {
out <- isOutlier(numeric(0))
expect_identical(as.logical(out), logical(0))
expect_error(out <- isOutlier(numeric(0), batch=1), "length of 'batch'")
out <- isOutlier(1:10, subset=integer(0))
expect_identical(as.logical(out), rep(NA, 10))
})
test_that("outlier.filter behaves correctly", {
vals <- rnorm(1000)
out <- isOutlier(vals)
expect_s3_class(out, "outlier.filter")
expect_true(!is.null(attr(out, "thresholds")))
# Robust to filtering.
expect_s3_class(out[1:10], "outlier.filter")
expect_identical(attr(out[1:10], "thresholds"), attr(out, "thresholds"))
# Works with c().
combined <- c(out, logical(10))
expect_null(attr(combined, "thresholds"))
expect_type(combined, "logical")
combined <- c(out, out)
expect_null(attr(combined, "thresholds"))
expect_type(combined, "logical")
# We can use it for filtering.
mock <- mockSCE()
out <- isOutlier(colSums(counts(mock)), log=TRUE)
expect_identical(mock[,out], mock[,as.logical(out)])
})
|