File: test-sum-across-cells.R

package info (click to toggle)
r-bioc-scuttle 1.8.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 888 kB
  • sloc: cpp: 508; sh: 7; makefile: 2
file content (484 lines) | stat: -rw-r--r-- 18,367 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# tests for cell-based pre-processing functions.
# library(scuttle); library(testthat); source("setup.R"); source("test-sum-across-cells.R")

library(Matrix)
library(DelayedArray)

##########################################################

set.seed(10003)
test_that("we can summarise counts at cell cluster level", {
    ids <- sample(ncol(sce)/2, ncol(sce), replace=TRUE)
    out <- sumCountsAcrossCells(sce, ids)

    expect_identical(assay(out), colsum(counts(sce), ids))
    expect_identical(colnames(out), as.character(sort(unique(ids)))) # numeric ordering is preserved.
    expect_identical(sort(unique(ids)), out$ids)

    out2 <- sumCountsAcrossCells(counts(sce), ids)
    expect_identical(out, out2)

    # Robust to column names.
    copy <- sce
    colnames(copy) <- paste0("CELL", seq_len(ncol(copy)))
    expect_identical(sumCountsAcrossCells(copy, ids), out)

    # assay.type= works correctly.
    alt <- sce
    assayNames(alt) <- "whee"
    out2 <- sumCountsAcrossCells(alt, ids, assay.type="whee")
    expect_identical(out, out2)

    # Respects levels properly.
    fids <- factor(ids, levels=rev(sort(unique(ids))))
    fout <- sumCountsAcrossCells(sce, fids)
    fout <- fout[,ncol(fout):1]
    fout$ids <- as.integer(levels(fout$ids))[fout$ids]
    expect_identical(out, fout)

    # Drops unused levels.
    fids <- factor(ids, levels=1:100)
    fout <- sumCountsAcrossCells(sce, fids)
    expect_identical(fout$ids, sort(unique(fids)))
    fout$ids <- as.integer(fout$ids)
    expect_identical(out, fout)

    # Handles NA's correctly.
    ids2 <- sample(LETTERS, ncol(sce), replace=TRUE)
    out2 <- sumCountsAcrossCells(sce, ids2)

    ids3 <- ids2
    ids3[ids3=="A"] <- NA
    out3 <- sumCountsAcrossCells(sce, ids3)

    expect_identical(out2[,setdiff(colnames(out2), "A")], out3)

    all.na <- ids
    all.na[] <- NA
    out3 <- sumCountsAcrossCells(sce, all.na)
    expect_identical(ncol(out3), 0L)
    expect_identical(rownames(out3), rownames(sce))

    # Doesn't store numbers fi we don't ask.
    out <- sumCountsAcrossCells(sce, ids, store.number=NULL)
    expect_null(out$ncells)
})

set.seed(10004)
test_that("by-cell count summarization behaves with other classes", {
    ids <- sample(ncol(sce)/2, ncol(sce), replace=TRUE)
    ref <- sumCountsAcrossCells(sce, ids)

    # Handles sparse matrices properly.
    sparsified <- sce
    counts(sparsified) <- as(counts(sparsified), "dgCMatrix")
    spack <- sumCountsAcrossCells(sparsified, ids)
    expect_identical(ref, spack)

    unknown <- sce
    counts(unknown) <- as(counts(unknown), "dgTMatrix")
    spack <- sumCountsAcrossCells(unknown, ids)
    expect_identical(ref, spack)

    # Handles DelayedArrays properly.
    delayed <- sce
    counts(delayed) <- DelayedArray(counts(delayed))
    dack <- sumCountsAcrossCells(delayed, ids)
    expect_equivalent(ref, dack)

    # Handles _sparse_ DelayedArrays properly.
    sdelayed <- sce
    counts(sdelayed) <- DelayedArray(as(counts(sce), "dgCMatrix"))
    sdack <- sumCountsAcrossCells(sdelayed, ids)
    expect_equivalent(ref, sdack)
})

set.seed(100041)
test_that("by-cell count summarization handles parallelization properly", {
    ids <- sample(ncol(sce)/2, ncol(sce), replace=TRUE)
    ref <- sumCountsAcrossCells(sce, ids)
    
    alt <- sumCountsAcrossCells(sce, ids, BPPARAM=safeBPParam(2))
    expect_identical(alt, ref)

    alt <- sumCountsAcrossCells(sce, ids, BPPARAM=safeBPParam(3))
    expect_identical(alt, ref)
})

set.seed(10004001)
test_that("by-cell count summarization behaves with subsetting", {
    ids <- sample(LETTERS[1:5], ncol(sce), replace=TRUE)

    expect_identical(sumCountsAcrossCells(counts(sce), ids, subset.row=10:1),
        sumCountsAcrossCells(counts(sce), ids)[10:1,])

    expect_identical(sumCountsAcrossCells(counts(sce), ids, subset.col=2:15),
        sumCountsAcrossCells(counts(sce)[,2:15], ids[2:15]))
})

set.seed(100040002)
test_that("by-cell count summarization works with various average types", {
    ids <- sample(LETTERS[1:5], ncol(sce), replace=TRUE)
    ref <- sumCountsAcrossCells(sce, ids)

    # Handles vanilla averaging:
    out2 <- sumCountsAcrossCells(sce, ids, average=TRUE)
    expect_identical(assay(out2), t(t(colsum(counts(sce), ids))/as.integer(table(ids))))
    expect_identical(colData(out2), colData(ref))

    out3 <- sumCountsAcrossCells(sce, ids, average="mean")
    expect_identical(out2, out3)

    # Handles medianizing.
    out4 <- sumCountsAcrossCells(sce, ids, average="median")
    expect_false(identical(out2, out4))

    # 'none' is the same as FALSE.
    expect_identical(ref, sumCountsAcrossCells(sce, ids, average="none"))
})

set.seed(1000401)
test_that("Aggregation across cells works correctly with DFs", {
    # One factor.
    ids <- sample(ncol(sce)/2, ncol(sce), replace=TRUE)
    ref <- sumCountsAcrossCells(sce, ids)
    out <- sumCountsAcrossCells(sce, DataFrame(X=ids))

    expect_identical(colnames(ref), as.character(out$X))
    expect_equivalent(assay(ref), assay(out))
    expect_identical(out$ncells, ref$ncells)
    expect_identical(out$ncells, as.integer(table(ids)))

    # Two factors.
    extra <- sample(LETTERS[1:3], ncol(sce), replace=TRUE)
    combined <- paste0(ids, "-", extra)
    ref <- sumCountsAcrossCells(sce, combined)
    df <- DataFrame(X=ids, Y=extra)
    out <- sumCountsAcrossCells(sce, df)

    post.combined <- paste0(out$X, "-", out$Y)
    expect_identical(sort(colnames(ref)), sort(post.combined))
    m <- match(colnames(ref), post.combined)
    expect_equivalent(assay(ref), assay(out)[,m])

    expect_identical(order(colData(out)), seq_len(ncol(out))) # output is ordered.
    expect_identical(out$ncells, as.integer(table(selfmatch(sort(df)))))

    ref <- sumCountsAcrossCells(sce, combined, average=TRUE)
    out <- sumCountsAcrossCells(sce, df, average=TRUE)
    expect_equivalent(assay(ref), assay(out)[,m])

    # Handles NAs correctly.
    extra[1] <- NA
    ids[2] <- NA
    df <- DataFrame(X=ids, Y=extra)

    ref <- sumCountsAcrossCells(sce[,-(1:2)], df[-(1:2),])
    out <- sumCountsAcrossCells(sce, df)
    expect_equal(assay(ref), assay(out))
    expect_equal(colData(ref), colData(out))

    out2 <- sumCountsAcrossCells(sce, df, subset.col=-(1:2))
    expect_equal(out, out2)
})

##########################################################

set.seed(100041)
test_that("Aggregation across cells works correctly for SCEs", {
    ids <- paste0("CLUSTER_", sample(ncol(sce)/2, ncol(sce), replace=TRUE))
    alt <- aggregateAcrossCells(sce, ids)
    expect_identical(colnames(alt), sort(unique(ids)))

    ref <- sumCountsAcrossCells(counts(sce), ids)
    expect_identical(counts(alt), assay(ref))
    expect_identical(alt$ncells, ref$ncells)
    expect_identical(alt$ids, ref$ids)

    # Behaves in the presence of multiple assays.
    normcounts(sce) <- normalizeCounts(sce, log=FALSE)
    alt2 <- aggregateAcrossCells(sce, ids)
    expect_identical(alt, alt2)

    sce <- logNormCounts(sce, log=FALSE)
    alt3 <- aggregateAcrossCells(sce, ids, use.assay.type=c("counts", "normcounts"))
    expect_identical(counts(alt), counts(alt3))

    ref <- sumCountsAcrossCells(sce, ids, assay.type="normcounts")
    expect_identical(normcounts(alt3), assay(ref))

    # Works when the count matrix is not the first.
    sce2 <- sce
    assays(sce2) <- assays(sce2)[2:1]
    alt4 <- aggregateAcrossCells(sce2, ids)
    ref <- sumCountsAcrossCells(counts(sce), ids)
    expect_identical(counts(alt4), assay(ref))
})

set.seed(1000401)
test_that("Aggregation across cells works correctly with altExps", {
    ids <- paste0("CLUSTER_", sample(10, ncol(sce), replace=TRUE))
    copy <- sce
    altExp(copy, "THING") <- sce
    counts(altExp(copy)) <- counts(altExp(copy)) * 2

    # Doesn't pass along by default.
    suppressWarnings(agg <- aggregateAcrossCells(copy, ids))
    expect_identical(altExpNames(agg), character(0))

    # But apply'ing works correctly.
    agg0 <- applySCE(copy, aggregateAcrossCells, ids=ids)
    expect_identical(counts(agg0), counts(agg))
    expect_identical(counts(altExp(agg0, "THING")), counts(agg)*2)

    # Other options work correctly.
    agg4 <- applySCE(copy, FUN=aggregateAcrossCells, ids=ids, WHICH=1, use.altexps=NULL)
    expect_identical(altExpNames(agg4), "THING")
    agg5 <- applySCE(copy, FUN=aggregateAcrossCells, ids=ids, WHICH="THING", use.altexps=NULL)
    expect_identical(altExpNames(agg5), "THING")
})

set.seed(1000401)
test_that("Aggregation across cells works correctly with reducedDims", {
    ids <- paste0("CLUSTER_", sample(20, ncol(sce), replace=TRUE))
    copy <- sce
    reducedDim(copy, "PCA") <- t(assay(sce)[1:3,])
    reducedDim(copy, "TSNE") <- t(assay(sce)[1:10,])

    # Responds to the average settings.
    agg <- aggregateAcrossCells(copy, ids, statistics="mean")
    expect_identical(reducedDim(agg, "PCA"), t(assay(agg)[1:3,]))
    expect_identical(reducedDim(agg, "TSNE"), t(assay(agg)[1:10,]))

    agg2 <- aggregateAcrossCells(copy, ids, statistics="sum")
    expect_identical(reducedDims(agg2), reducedDims(agg))

    agg3 <- aggregateAcrossCells(copy, ids, statistics="median", dimred.stats="median")
    expect_identical(reducedDim(agg3, "PCA"), t(assay(agg3)[1:3,]))
    expect_identical(reducedDim(agg3, "TSNE"), t(assay(agg3)[1:10,]))
    expect_false(identical(agg3, agg))

    # Behaves with NAs.
    ids2 <- ids
    failed <- ids2==ids2[1]
    ids2[failed] <- NA
    expect_identical(
        aggregateAcrossCells(copy, ids2, statistics="mean"),
        aggregateAcrossCells(copy[,!failed], ids[!failed], statistics="mean")
    )

    # Other options work correctly.
    agg1 <- aggregateAcrossCells(copy, ids, use.dimred=1)
    expect_identical(reducedDimNames(agg1), "PCA")
    expect_error(aggregateAcrossCells(copy, ids, use.dimred=10), 'use.dimred')

    agg2 <- aggregateAcrossCells(copy, ids, use.dimred="TSNE")
    expect_identical(reducedDimNames(agg2), "TSNE")
    expect_error(aggregateAcrossCells(copy, ids, use.dimred="WHEE"), 'use.dimred')

    agg0 <- aggregateAcrossCells(sce, ids, use.dimred=FALSE)
    expect_identical(reducedDimNames(agg0), character(0))
})

set.seed(1000411)
test_that("Aggregation across cells works correctly for SCEs with DFs", {
    ids <- paste0("CLUSTER_", sample(ncol(sce)/2, ncol(sce), replace=TRUE))
    extra <- sample(LETTERS[1:3], ncol(sce), replace=TRUE)

    combined <- DataFrame(X=ids, Y=extra)
    agg <- aggregateAcrossCells(sce, combined)
    ref <- sumCountsAcrossCells(counts(sce), combined)

    expect_identical(counts(agg), assay(ref))
    expect_identical(agg$X, ref$X)
    expect_identical(agg$Y, ref$Y)
    expect_identical(agg$ncells, ref$ncells)

    # Same for alternative experiments.
    copy <- sce
    altExp(copy, "THING") <- sce
    counts(altExp(copy)) <- counts(altExp(copy)) * 2

    agg <- applySCE(copy, aggregateAcrossCells, ids=combined)
    expect_identical(counts(agg), assay(ref))
    expect_identical(counts(altExp(agg, "THING")), assay(ref)*2)
    expect_identical(ref$X, altExp(agg)$X)
    expect_identical(ref$Y, altExp(agg)$Y)

    expect_identical(agg$ncells, ref$ncells)
    expect_identical(altExp(agg)$ncells, ref$ncells)

    # Same for reduced dimensions.
    copy <- sce
    reducedDim(copy, "PCA") <- t(assay(sce)[1:3,])
    agg <- aggregateAcrossCells(copy, combined, statistics="mean")
    expect_identical(reducedDim(agg, "PCA"), t(assay(agg)[1:3,]))
})

set.seed(1000412)
test_that("Aggregation across cells works correctly with custom coldata acquisition", {
    ids <- paste0("CLUSTER_", sample(ncol(sce)/2, ncol(sce), replace=TRUE))
    sce$thing <- seq_len(ncol(sce))

    # Defaults to partial NA's.
    alt <- aggregateAcrossCells(sce, ids)
    tab <- table(ids)
    expect_identical(colnames(alt)[is.na(alt$thing)], names(tab)[tab > 1])
    expect_equivalent(alt$thing[!is.na(alt$thing)], sce$thing[match(names(tab)[tab==1], ids)])

    # Defaults to a sensible value if we enforce identity within each group.
    sce$thing2 <- ids
    alt <- aggregateAcrossCells(sce, ids)
    expect_equivalent(colnames(alt), alt$thing2)

    # Responds to taking the first.
    alt <- aggregateAcrossCells(sce, ids, coldata_merge=function(x) head(x, 1))
    expect_equivalent(alt$thing, as.integer(by(sce$thing, ids, head, n=1)))
    expect_equivalent(alt$Mutation_Status, as.character(
        by(data.frame(sce$Mutation_Status, stringsAsFactors=FALSE), ids, FUN=head, n=1))
    )
    expect_identical(colnames(alt), sort(unique(ids)))

    # Responds to taking the sum.
    alt <- aggregateAcrossCells(sce, ids, coldata_merge=list(thing=sum))
    expect_equivalent(alt$thing, as.integer(by(sce$thing, ids, sum)))
    expect_identical(colnames(alt), sort(unique(ids)))

    alt <- aggregateAcrossCells(sce, ids, coldata_merge=list(Cell_Cycle=function(x) paste(x, collapse="")))
    expect_type(alt$Cell_Cycle, "character")

    # Setting FALSE works corectly.
    alt <- aggregateAcrossCells(sce, ids, coldata_merge=FALSE)
    expect_identical(colnames(colData(alt)), c("ids", "ncells"))
    alt <- aggregateAcrossCells(sce, ids, coldata_merge=list(thing=FALSE))
    expect_identical(alt$thing, NULL)
})

set.seed(1000412)
test_that("Aggregation across cells works correctly with different colData types", {
    ids <- paste0("CLUSTER_", sample(ncol(sce)/2, ncol(sce), replace=TRUE))

    # Handles factors correctly.
    alt <- sce
    alt$Cell_Cycle <- factor(alt$Cell_Cycle)
    alt <- aggregateAcrossCells(alt, factor(ids))
    expect_true(is.factor(alt$Cell_Cycle))
    expect_true(is.factor(alt$ids))

    alt <- sce
    alt$Cell_Cycle <- factor(alt$Cell_Cycle)
    alt <- aggregateAcrossCells(alt, rep(NA, ncol(alt)))
    expect_true(is.factor(alt$Cell_Cycle))

    # Handles nested DFs correctly.
    alt <- sce
    alt$nested <- DataFrame(ID=ids)
    alt <- aggregateAcrossCells(alt, ids)
    expect_s4_class(alt$nested, "DFrame")
    expect_identical(alt$nested$ID, alt$ids)

    alt <- sce
    alt$nested <- DataFrame(ID=runif(ncol(alt)))
    alt <- aggregateAcrossCells(alt, ids)
    expect_s4_class(alt$nested, "DFrame")
    expect_type(alt$nested$ID, "double")
    expect_true(any(is.na(alt$nested$ID)))

    alt <- sce
    alt$nested <- DataFrame(ID=runif(ncol(alt)))
    alt <- aggregateAcrossCells(alt, rep(NA, ncol(alt)))
    expect_s4_class(alt$nested, "DFrame")
    expect_type(alt$nested$ID, "double")
})

set.seed(10004121)
test_that("Aggregation across cells works correctly with suffixing", {
    ids <- paste0("CLUSTER_", sample(ncol(sce)/2, ncol(sce), replace=TRUE))
    alt <- aggregateAcrossCells(sce, ids, suffix=TRUE)
    expect_identical(assayNames(alt), "counts.sum")

    sce <- logNormCounts(sce)
    alt <- aggregateAcrossCells(sce, ids, statistics=c("mean", "median"), use.assay.type=TRUE)
    expect_identical(assayNames(alt), c("counts.mean", "counts.median", "logcounts.mean", "logcounts.median"))

    # Works for reddims.
    reducedDims(sce) <- list(PCA=matrix(runif(ncol(sce)*2), ncol=2), TSNE=matrix(rnorm(ncol(sce)*2), ncol=2))
    alt <- aggregateAcrossCells(sce, ids)
    expect_identical(reducedDimNames(alt), reducedDimNames(sce))

    alt <- aggregateAcrossCells(sce, ids, suffix=TRUE)
    expect_identical(reducedDimNames(alt), paste0(reducedDimNames(sce), ".mean"))
    expect_identical(assayNames(alt), "counts.sum") # passed along.

    alt <- aggregateAcrossCells(sce, ids, use.dimred="PCA", dimred.stats=c("mean", "median"))
    expect_identical(reducedDimNames(alt), c("PCA.mean", "PCA.median"))
})

set.seed(1000413)
test_that("Aggregation across cells doesn't choke on syntactically invalid names", {
    ids <- paste0("CLUSTER_", sample(ncol(sce)/2, ncol(sce), replace=TRUE))
    sce$`batman and robin` <- 2
    alt <- aggregateAcrossCells(sce, ids)
    expect_identical(sum(alt$`batman and robin`==2), ncol(alt))
})

set.seed(100042)
test_that("Aggregation across cells works correctly for SEs", {
    ids <- paste0("CLUSTER_", sample(ncol(sce)/2, ncol(sce), replace=TRUE))
    alt <- aggregateAcrossCells(sce, ids)
    expect_identical(colnames(alt), sort(unique(ids)))

    ref <- sumCountsAcrossCells(counts(sce), ids)
    expect_identical(counts(alt), assay(ref))
    expect_identical(alt$ids, ref$ids)
    expect_identical(alt$ncells, ref$ncells)
})

##########################################################

test_that("numDetectedAcrossCells works as expected", {
    ids <- sample(LETTERS[1:5], ncol(sce), replace=TRUE)

    out <- numDetectedAcrossCells(counts(sce), ids)
    expect_equal(assay(out), colsum((counts(sce) > 0)+0, ids))
    expect_identical(out$ids, colnames(out))
    out <- numDetectedAcrossCells(counts(sce), ids, average=TRUE)
    expect_identical(assay(out), t(t(colsum((counts(sce) > 0)+0, ids))/as.integer(table(ids))))

    # Checking that it works direclty with SCEs.
    expect_equal(numDetectedAcrossCells(counts(sce), ids),
        numDetectedAcrossCells(sce, ids))
    expect_equal(numDetectedAcrossCells(counts(sce), ids, average=TRUE),
        numDetectedAcrossCells(sce, ids, average=TRUE))

    # Checking that subsetting works.
    expect_identical(numDetectedAcrossCells(counts(sce), ids, subset.row=10:1),
        numDetectedAcrossCells(counts(sce), ids)[10:1,])

    expect_identical(numDetectedAcrossCells(counts(sce), ids, subset.col=2:15),
        numDetectedAcrossCells(counts(sce)[,2:15], ids[2:15]))

    ids[c(1,3,5,6)] <- NA
    expect_identical(numDetectedAcrossCells(counts(sce), ids),
        numDetectedAcrossCells(counts(sce)[,!is.na(ids)], ids[!is.na(ids)]))

    # Comparing to sumCountsAcrossCells.
    expect_equal(numDetectedAcrossCells(counts(sce), ids),
        sumCountsAcrossCells((counts(sce) > 0)+0, ids))
    expect_equal(numDetectedAcrossCells(counts(sce), ids, average=TRUE),
        sumCountsAcrossCells((counts(sce) > 0)+0, ids, average=TRUE))
})

test_that("numDetectedAcrossCells handles other matrix classes", {
    thing <- matrix(rpois(2000, lambda=0.5), ncol=100, nrow=20)
    ids <- sample(LETTERS[1:6], ncol(thing), replace=TRUE)

    ref <- numDetectedAcrossCells(thing, ids)
    expect_equal(rowSums(assay(ref)), rowSums(thing > 0)) # basic sanity check.

    sparse <- as(thing, 'dgCMatrix')
    expect_equal(numDetectedAcrossCells(sparse, ids), ref)

    delayed <- DelayedArray(thing)
    expect_equal(numDetectedAcrossCells(delayed, ids), ref)
})