1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
|
# tests for feature pre-processing functions.
# library(scuttle); library(testthat); source("setup.R"); source("test-sum-across-feat.R")
library(Matrix)
library(DelayedArray)
##########################################################
set.seed(10001)
test_that("we can summarise counts at feature set level", {
ids <- sample(nrow(sce)/2, nrow(sce), replace=TRUE)
out <- sumCountsAcrossFeatures(sce, ids)
expect_identical(out, rowsum(counts(sce), ids))
expect_identical(rownames(out), as.character(sort(unique(ids))))
out2 <- sumCountsAcrossFeatures(counts(sce), ids)
expect_identical(out, out2)
# Handles averaging correctly.
out2 <- sumCountsAcrossFeatures(sce, ids, average=TRUE)
expect_identical(out2, rowsum(counts(sce), ids)/as.integer(table(ids)))
# assay.type= works correctly.
alt <- sce
assayNames(alt) <- "whee"
out2 <- sumCountsAcrossFeatures(alt, ids, assay.type="whee")
expect_identical(out, out2)
# Respects levels properly.
fids <- factor(ids, levels=rev(sort(unique(ids))))
fout <- sumCountsAcrossFeatures(sce, fids)
expect_identical(out, fout[nrow(fout):1,])
})
set.seed(10001)
test_that("count summarization at feature set level respects NAs", {
ids2 <- sample(LETTERS, nrow(sce), replace=TRUE)
out2 <- sumCountsAcrossFeatures(sce, ids2)
ids3 <- ids2
ids3[ids3=="A"] <- NA
out3 <- sumCountsAcrossFeatures(sce, ids3)
expect_identical(out2[setdiff(rownames(out2), "A"),], out3)
ids4 <- ids2
ids4[1:10] <- NA
out4a <- sumCountsAcrossFeatures(sce, ids4)
out4b <- sumCountsAcrossFeatures(sce[-(1:10),], ids4[-(1:10)])
expect_identical(out4a, out4b)
})
set.seed(10002)
test_that("by-feature count summarization behaves with lists", {
idl <- list(10:1, sample(nrow(sce), 100), nrow(sce) - 1:10)
outl <- sumCountsAcrossFeatures(sce, idl)
manual <- list()
for (i in seq_along(idl)) {
manual[[i]] <- colSums(counts(sce)[idl[[i]],])
}
expect_identical(outl, do.call(rbind, manual))
expect_identical(outl, sumCountsAcrossFeatures(sce, lapply(idl, function(i) rownames(sce)[i])))
expect_identical(outl, sumCountsAcrossFeatures(sce, lapply(idl, function(i) seq_len(nrow(sce)) %in% i)))
expect_identical(outl/lengths(idl), sumCountsAcrossFeatures(sce, idl, average=TRUE))
})
set.seed(100021)
test_that("by-feature count summarization responds to subsetting", {
ids <- sample(LETTERS, nrow(sce), replace=TRUE)
keep <- rbinom(nrow(sce), 1, 0.5)>0
ref <- sumCountsAcrossFeatures(sce[keep,], ids[keep])
out <- sumCountsAcrossFeatures(sce, ids, subset.row=keep)
expect_identical(out, ref)
keep2 <- rbinom(ncol(sce), 1, 0.5)>0
ref <- sumCountsAcrossFeatures(sce[,keep2], ids)
out <- sumCountsAcrossFeatures(sce, ids, subset.col=keep2)
expect_identical(out, ref)
})
##########################################################
set.seed(10003)
test_that("by-feature count summarization behaves with different classes", {
ids <- sample(nrow(sce)/2, nrow(sce), replace=TRUE)
ref <- sumCountsAcrossFeatures(sce, ids)
# Handles sparse matrices properly.
library(Matrix)
sparsified <- sce
counts(sparsified) <- as(counts(sparsified), "dgCMatrix")
spack <- sumCountsAcrossFeatures(sparsified, ids)
expect_equal(ref, as.matrix(spack))
unknown <- sce
counts(unknown) <- as(counts(unknown), "dgTMatrix")
spack <- sumCountsAcrossFeatures(unknown, ids)
expect_equivalent(ref, as.matrix(spack))
# Handles DelayedArrays properly.
delayed <- sce
counts(delayed) <- DelayedArray(counts(delayed))
dack <- sumCountsAcrossFeatures(delayed, ids)
expect_equivalent(ref, as.matrix(dack))
})
set.seed(100031)
test_that("by-feature count summarization parallelizes properly", {
ids <- sample(nrow(sce)/2, nrow(sce), replace=TRUE)
ref <- sumCountsAcrossFeatures(sce, ids)
# Handles parallelization properly.
alt <- sumCountsAcrossFeatures(sce, ids, BPPARAM=safeBPParam(2))
expect_identical(alt, ref)
alt <- sumCountsAcrossFeatures(sce, ids, BPPARAM=safeBPParam(3))
expect_identical(alt, ref)
})
##########################################################
set.seed(10004)
test_that("Aggregation across features works correctly", {
ids <- paste0("GENE_", sample(nrow(sce)/2, nrow(sce), replace=TRUE))
alt <- aggregateAcrossFeatures(sce, ids)
expect_identical(rownames(alt), sort(unique(ids)))
expect_identical(counts(alt), sumCountsAcrossFeatures(counts(sce), ids))
# Behaves in the presence of multiple assays.
normcounts(sce) <- normalizeCounts(sce, log=FALSE)
alt2 <- aggregateAcrossFeatures(sce, ids)
expect_identical(alt, alt2)
alt3 <- aggregateAcrossFeatures(sce, ids, use.assay.type=c("counts", "normcounts"))
expect_identical(counts(alt), counts(alt3))
expect_identical(normcounts(alt3), sumCountsAcrossFeatures(sce, ids, assay.type="normcounts"))
})
set.seed(10004)
test_that("Aggregation across features works correctly with lists", {
idl <- list(10:1, sample(nrow(sce), 100), nrow(sce) - 1:10)
alt <- aggregateAcrossFeatures(sce, idl)
outl <- sumCountsAcrossFeatures(sce, idl)
expect_identical(counts(alt), outl)
# Handles row names.
idl <- list(X=10:1, Y=sample(nrow(sce), 100), Z=nrow(sce) - 1:10)
alt <- aggregateAcrossFeatures(sce, idl)
expect_identical(rownames(alt), names(idl))
# Strips metadata.
rowRanges(sce) <- GRanges("chrA", IRanges(seq_len(nrow(sce)), width=1))
alt <- aggregateAcrossFeatures(sce, idl)
expect_identical(ncol(rowData(alt)), 0L)
expect_true(all(lengths(rowRanges(alt))==0))
# Stripping works for SE's.
se <- as(sce, "SummarizedExperiment")
rowData(se)$stuff <- 1L
alt <- aggregateAcrossFeatures(se, idl)
expect_identical(ncol(rowData(alt)), 0L)
expect_identical(rownames(alt), names(idl))
})
############################################
test_that("numDetectedAcrossFeatures works as expected", {
ids <- sample(LETTERS[1:5], nrow(sce), replace=TRUE)
expect_equal(numDetectedAcrossFeatures(counts(sce), ids),
rowsum((counts(sce) > 0)+0, ids))
expect_identical(numDetectedAcrossFeatures(counts(sce), ids, average=TRUE),
rowsum((counts(sce) > 0)+0, ids)/as.integer(table(ids)))
# Checking that it works direclty with SCEs.
expect_equal(numDetectedAcrossFeatures(counts(sce), ids),
numDetectedAcrossFeatures(sce, ids))
expect_equal(numDetectedAcrossFeatures(counts(sce), ids, average=TRUE),
numDetectedAcrossFeatures(sce, ids, average=TRUE))
# Checking that subsetting works.
expect_identical(numDetectedAcrossFeatures(counts(sce), ids, subset.col=10:1),
numDetectedAcrossFeatures(counts(sce), ids)[,10:1])
expect_identical(numDetectedAcrossFeatures(counts(sce), ids, subset.row=2:15),
numDetectedAcrossFeatures(counts(sce)[2:15,], ids[2:15]))
ids[c(1,3,5,6)] <- NA
expect_identical(numDetectedAcrossFeatures(counts(sce), ids),
numDetectedAcrossFeatures(counts(sce)[!is.na(ids),], ids[!is.na(ids)]))
# Comparing to sumCountsAcrossFeatures.
expect_equal(numDetectedAcrossFeatures(counts(sce), ids),
sumCountsAcrossFeatures((counts(sce) > 0)+0, ids))
expect_equal(numDetectedAcrossFeatures(counts(sce), ids, average=TRUE),
sumCountsAcrossFeatures((counts(sce) > 0)+0, ids, average=TRUE))
})
test_that("numDetectedAcrossFeatures handles other matrix classes", {
thing <- matrix(rpois(2000, lambda=0.5), ncol=100, nrow=20)
ids <- sample(LETTERS[1:6], nrow(thing), replace=TRUE)
ref <- numDetectedAcrossFeatures(thing, ids)
expect_equal(colSums(ref), colSums(thing > 0))
sparse <- as(thing, 'dgCMatrix')
expect_equal(numDetectedAcrossFeatures(sparse, ids), ref)
delayed <- DelayedArray(thing)
expect_equal(numDetectedAcrossFeatures(delayed, ids), ref)
})
|