File: test-sum-across-feat.R

package info (click to toggle)
r-bioc-scuttle 1.8.4%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 888 kB
  • sloc: cpp: 508; sh: 7; makefile: 2
file content (216 lines) | stat: -rw-r--r-- 7,974 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# tests for feature pre-processing functions.
# library(scuttle); library(testthat); source("setup.R"); source("test-sum-across-feat.R")

library(Matrix)
library(DelayedArray)

##########################################################

set.seed(10001)
test_that("we can summarise counts at feature set level", {
    ids <- sample(nrow(sce)/2, nrow(sce), replace=TRUE)
    out <- sumCountsAcrossFeatures(sce, ids)
    expect_identical(out, rowsum(counts(sce), ids))
    expect_identical(rownames(out), as.character(sort(unique(ids))))

    out2 <- sumCountsAcrossFeatures(counts(sce), ids)
    expect_identical(out, out2)

    # Handles averaging correctly.
    out2 <- sumCountsAcrossFeatures(sce, ids, average=TRUE)
    expect_identical(out2, rowsum(counts(sce), ids)/as.integer(table(ids)))

    # assay.type= works correctly.
    alt <- sce
    assayNames(alt) <- "whee"
    out2 <- sumCountsAcrossFeatures(alt, ids, assay.type="whee")
    expect_identical(out, out2)

    # Respects levels properly.
    fids <- factor(ids, levels=rev(sort(unique(ids))))
    fout <- sumCountsAcrossFeatures(sce, fids)
    expect_identical(out, fout[nrow(fout):1,])
})

set.seed(10001)
test_that("count summarization at feature set level respects NAs", {
    ids2 <- sample(LETTERS, nrow(sce), replace=TRUE)
    out2 <- sumCountsAcrossFeatures(sce, ids2)

    ids3 <- ids2
    ids3[ids3=="A"] <- NA
    out3 <- sumCountsAcrossFeatures(sce, ids3)
    expect_identical(out2[setdiff(rownames(out2), "A"),], out3)

    ids4 <- ids2
    ids4[1:10] <- NA
    out4a <- sumCountsAcrossFeatures(sce, ids4)
    out4b <- sumCountsAcrossFeatures(sce[-(1:10),], ids4[-(1:10)])
    expect_identical(out4a, out4b)
})

set.seed(10002)
test_that("by-feature count summarization behaves with lists", {
    idl <- list(10:1, sample(nrow(sce), 100), nrow(sce) - 1:10)
    outl <- sumCountsAcrossFeatures(sce, idl)

    manual <- list()
    for (i in seq_along(idl)) {
        manual[[i]] <- colSums(counts(sce)[idl[[i]],])
    }
    expect_identical(outl, do.call(rbind, manual))

    expect_identical(outl, sumCountsAcrossFeatures(sce, lapply(idl, function(i) rownames(sce)[i])))

    expect_identical(outl, sumCountsAcrossFeatures(sce, lapply(idl, function(i) seq_len(nrow(sce)) %in% i)))
    
    expect_identical(outl/lengths(idl), sumCountsAcrossFeatures(sce, idl, average=TRUE))
})

set.seed(100021)
test_that("by-feature count summarization responds to subsetting", {
    ids <- sample(LETTERS, nrow(sce), replace=TRUE)

    keep <- rbinom(nrow(sce), 1, 0.5)>0
    ref <- sumCountsAcrossFeatures(sce[keep,], ids[keep])
    out <- sumCountsAcrossFeatures(sce, ids, subset.row=keep)
    expect_identical(out, ref)

    keep2 <- rbinom(ncol(sce), 1, 0.5)>0
    ref <- sumCountsAcrossFeatures(sce[,keep2], ids)
    out <- sumCountsAcrossFeatures(sce, ids, subset.col=keep2)
    expect_identical(out, ref)
})

##########################################################

set.seed(10003)
test_that("by-feature count summarization behaves with different classes", {
    ids <- sample(nrow(sce)/2, nrow(sce), replace=TRUE)
    ref <- sumCountsAcrossFeatures(sce, ids)

    # Handles sparse matrices properly.
    library(Matrix)
    sparsified <- sce
    counts(sparsified) <- as(counts(sparsified), "dgCMatrix")
    spack <- sumCountsAcrossFeatures(sparsified, ids)
    expect_equal(ref, as.matrix(spack))

    unknown <- sce
    counts(unknown) <- as(counts(unknown), "dgTMatrix")
    spack <- sumCountsAcrossFeatures(unknown, ids)
    expect_equivalent(ref, as.matrix(spack))

    # Handles DelayedArrays properly.
    delayed <- sce
    counts(delayed) <- DelayedArray(counts(delayed))
    dack <- sumCountsAcrossFeatures(delayed, ids)
    expect_equivalent(ref, as.matrix(dack))
})

set.seed(100031)
test_that("by-feature count summarization parallelizes properly", {
    ids <- sample(nrow(sce)/2, nrow(sce), replace=TRUE)
    ref <- sumCountsAcrossFeatures(sce, ids)

    # Handles parallelization properly.
    alt <- sumCountsAcrossFeatures(sce, ids, BPPARAM=safeBPParam(2))
    expect_identical(alt, ref)

    alt <- sumCountsAcrossFeatures(sce, ids, BPPARAM=safeBPParam(3))
    expect_identical(alt, ref)
})

##########################################################

set.seed(10004)
test_that("Aggregation across features works correctly", {
    ids <- paste0("GENE_", sample(nrow(sce)/2, nrow(sce), replace=TRUE))
    alt <- aggregateAcrossFeatures(sce, ids)

    expect_identical(rownames(alt), sort(unique(ids)))
    expect_identical(counts(alt), sumCountsAcrossFeatures(counts(sce), ids))

    # Behaves in the presence of multiple assays.
    normcounts(sce) <- normalizeCounts(sce, log=FALSE)
    alt2 <- aggregateAcrossFeatures(sce, ids)
    expect_identical(alt, alt2)

    alt3 <- aggregateAcrossFeatures(sce, ids, use.assay.type=c("counts", "normcounts"))
    expect_identical(counts(alt), counts(alt3))
    expect_identical(normcounts(alt3), sumCountsAcrossFeatures(sce, ids, assay.type="normcounts"))
})

set.seed(10004)
test_that("Aggregation across features works correctly with lists", {
    idl <- list(10:1, sample(nrow(sce), 100), nrow(sce) - 1:10)
    alt <- aggregateAcrossFeatures(sce, idl)
    outl <- sumCountsAcrossFeatures(sce, idl)
    expect_identical(counts(alt), outl)

    # Handles row names.
    idl <- list(X=10:1, Y=sample(nrow(sce), 100), Z=nrow(sce) - 1:10)
    alt <- aggregateAcrossFeatures(sce, idl)
    expect_identical(rownames(alt), names(idl))

    # Strips metadata.
    rowRanges(sce) <- GRanges("chrA", IRanges(seq_len(nrow(sce)), width=1))
    alt <- aggregateAcrossFeatures(sce, idl)
    expect_identical(ncol(rowData(alt)), 0L)
    expect_true(all(lengths(rowRanges(alt))==0))

    # Stripping works for SE's.
    se <- as(sce, "SummarizedExperiment")
    rowData(se)$stuff <- 1L
    alt <- aggregateAcrossFeatures(se, idl)
    expect_identical(ncol(rowData(alt)), 0L)
    expect_identical(rownames(alt), names(idl))
})

############################################

test_that("numDetectedAcrossFeatures works as expected", {
    ids <- sample(LETTERS[1:5], nrow(sce), replace=TRUE)

    expect_equal(numDetectedAcrossFeatures(counts(sce), ids),
        rowsum((counts(sce) > 0)+0, ids)) 
    expect_identical(numDetectedAcrossFeatures(counts(sce), ids, average=TRUE),
        rowsum((counts(sce) > 0)+0, ids)/as.integer(table(ids)))

    # Checking that it works direclty with SCEs.
    expect_equal(numDetectedAcrossFeatures(counts(sce), ids),
        numDetectedAcrossFeatures(sce, ids))
    expect_equal(numDetectedAcrossFeatures(counts(sce), ids, average=TRUE),
        numDetectedAcrossFeatures(sce, ids, average=TRUE))

    # Checking that subsetting works.
    expect_identical(numDetectedAcrossFeatures(counts(sce), ids, subset.col=10:1),
        numDetectedAcrossFeatures(counts(sce), ids)[,10:1])

    expect_identical(numDetectedAcrossFeatures(counts(sce), ids, subset.row=2:15),
        numDetectedAcrossFeatures(counts(sce)[2:15,], ids[2:15]))

    ids[c(1,3,5,6)] <- NA
    expect_identical(numDetectedAcrossFeatures(counts(sce), ids),
        numDetectedAcrossFeatures(counts(sce)[!is.na(ids),], ids[!is.na(ids)]))

    # Comparing to sumCountsAcrossFeatures.
    expect_equal(numDetectedAcrossFeatures(counts(sce), ids),
        sumCountsAcrossFeatures((counts(sce) > 0)+0, ids))
    expect_equal(numDetectedAcrossFeatures(counts(sce), ids, average=TRUE),
        sumCountsAcrossFeatures((counts(sce) > 0)+0, ids, average=TRUE))
})

test_that("numDetectedAcrossFeatures handles other matrix classes", {
    thing <- matrix(rpois(2000, lambda=0.5), ncol=100, nrow=20)
    ids <- sample(LETTERS[1:6], nrow(thing), replace=TRUE)

    ref <- numDetectedAcrossFeatures(thing, ids)
    expect_equal(colSums(ref), colSums(thing > 0))

    sparse <- as(thing, 'dgCMatrix')
    expect_equal(numDetectedAcrossFeatures(sparse, ids), ref)

    delayed <- DelayedArray(thing)
    expect_equal(numDetectedAcrossFeatures(delayed, ids), ref)
})