1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
### =========================================================================
### COO_SparseArray objects
### -------------------------------------------------------------------------
###
### Use COO layout to store the sparse data.
###
### Same as SparseArraySeed objects in the DelayedArray package.
### Extends the Coordinate List (COO) layout used for sparse matrices to
### multiple dimensions.
### See https://en.wikipedia.org/wiki/Sparse_matrix#Coordinate_list_(COO)
### This layout is also used by https://sparse.pydata.org/
###
### The COO_SparseArray API:
### - The SparseArray API (see SparseArray-class.R)
### - Getters nzcoo() and nzdata()
### - Coercion from array to COO_SparseArray
### - Back and forth coercion between COO_SparseArray and [d|l]g[C|R]Matrix
### objects from the Matrix package
###
setClass("COO_SparseArray",
contains="SparseArray",
representation(
nzcoo="matrix", # M-index containing the coordinates of the
# nonzero elements.
nzdata="vector" # A vector (atomic or list) of length 'nrow(nzcoo)'
# containing the nonzero elements.
),
prototype(
nzcoo=matrix(integer(0), ncol=1L),
nzdata=logical(0)
)
)
setClass("COO_SparseMatrix",
contains=c("COO_SparseArray", "SparseMatrix"),
prototype=prototype(
dim=c(0L, 0L),
dimnames=list(NULL, NULL),
nzcoo=matrix(integer(0), ncol=2L)
)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Going back and forth between COO_SparseArray and COO_SparseMatrix
###
### --- From COO_SparseArray to COO_SparseMatrix ---
### The user should NOT be able to promote a COO_SparseArray object to
### COO_SparseMatrix. Problem is that the automatic coercion method from
### COO_SparseArray to COO_SparseMatrix silently returns a broken object
### (unfortunately these dummy automatic coercion methods don't bother to
### validate the object they return). So we overwrite it with a method that
### will fail (as expected) thanks to the validity method for SparseMatrix
### objects.
setAs("COO_SparseArray", "COO_SparseMatrix",
function(from) new("COO_SparseMatrix", from)
)
### --- From COO_SparseMatrix to COO_SparseArray ---
### The user should NOT be able to demote a COO_SparseMatrix object to
### COO_SparseArray, so 'as(x, "COO_SparseArray")' and 'as(x, "SparseArray")'
### should fail or do nothing when 'x' is a COO_SparseMatrix object, even
### when called with 'strict=TRUE'. Making these coercions behave like no-ops
### seems to be the easiest (and safest) way to go.
setAs("COO_SparseMatrix", "COO_SparseArray", function(from) from) # no-op
### Do NOT use setAs() here! setAs() does really bad things if used to define
### this coercion method e.g. for some reason it calls setIs() internally to
### make COO_SparseMatrix a **direct** extension of SparseArray, thus
### altering (and breaking) our class hierarchy. This is not only conceptually
### wrong but it also seems to break dispatch e.g. calling 'show(x)' on
### COO_SparseMatrix object 'x' does not find the method for SparseArray
### objects despite 'is(x, "SparseArray")' being TRUE.
### Worst part is that this seems to be a "feature" (apparently setAs() tries
### to be really smart here!) but it's just a big mess.
setMethod("coerce", c("COO_SparseMatrix", "SparseArray"),
function(from, to, strict=TRUE) from # no-op
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Validity
###
.validate_nzcoo_slot <- function(x)
{
x_nzcoo <- x@nzcoo
if (!(is.matrix(x_nzcoo) && typeof(x_nzcoo) == "integer"))
return("'nzcoo' slot must be an integer matrix")
x_dim <- x@dim
if (ncol(x_nzcoo) != length(x_dim))
return(paste0("'nzcoo' slot must be a matrix with ",
"one column per dimension"))
for (along in seq_along(x_dim)) {
not_ok <- S4Vectors:::anyMissingOrOutside(x_nzcoo[ , along],
1L, x_dim[[along]])
if (not_ok)
return(paste0("'nzcoo' slot must contain valid indices, ",
"that is, indices that are not NA and are ",
">= 1 and <= their corresponding dimension"))
}
TRUE
}
.validate_nzdata_slot <- function(x)
{
x_nzdata <- x@nzdata
if (!(is.vector(x_nzdata) && length(x_nzdata) == nrow(x@nzcoo)))
return(paste0("'nzdata' slot must be a vector of length ",
"the number of rows in the 'nzcoo' slot"))
TRUE
}
.validate_COO_SparseArray <- function(x)
{
msg <- .validate_nzcoo_slot(x)
if (!isTRUE(msg))
return(msg)
msg <- .validate_nzdata_slot(x)
if (!isTRUE(msg))
return(msg)
TRUE
}
setValidity2("COO_SparseArray", .validate_COO_SparseArray)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Getters
###
setMethod("type", "COO_SparseArray", function(x) type(x@nzdata))
setGeneric("nzcoo", function(x) standardGeneric("nzcoo"))
setMethod("nzcoo", "COO_SparseArray", function(x) x@nzcoo)
setGeneric("nzdata", function(x) standardGeneric("nzdata"))
setMethod("nzdata", "COO_SparseArray", function(x) x@nzdata)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### type() setter
###
.set_COO_SparseArray_type <- function(x, value)
{
stopifnot(is(x, "COO_SparseArray"))
value <- S4Arrays:::normarg_array_type(value, "the supplied type")
x_type <- type(x)
if (value == x_type)
return(x)
new_nzdata <- x@nzdata
storage.mode(new_nzdata) <- value
nzidx <- default_nzwhich(new_nzdata)
new_nzcoo <- x@nzcoo[nzidx, , drop=FALSE]
new_nzdata <- new_nzdata[nzidx]
BiocGenerics:::replaceSlots(x, nzcoo=new_nzcoo,
nzdata=new_nzdata,
check=FALSE)
}
setReplaceMethod("type", "COO_SparseArray", .set_COO_SparseArray_type)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### .normalize_COO_SparseArray()
###
### The internal representation of a COO_SparseArray object 'x' is considered
### normalized if 'x@nzcoo' and 'x@nzdata' are both normalized:
### 1. 'x@nzcoo' is normalized if it's moving along the innermost dimension
### (a.k.a fastest moving dimension) of the object first. This is
### equivalent to 'Mindex2Lindex(x@nzcoo, dim(x))' being strictly sorted.
### 2. 'x@nzdata' is normalized if it contains no zeros.
### Normalizes the 'nzdata' slot of COO_SparseArray object 'x' by removing
### zeros from it.
.normalize_nzdata_slot <- function(x)
{
stopifnot(is(x, "COO_SparseArray"))
zero <- vector_of_zeros(type(x@nzdata), length=1L)
idx0 <- which(x@nzdata == zero)
if (length(idx0) == 0L)
return(x)
new_nzdata <- x@nzdata[-idx0]
## Keep 'nzcoo' slot parallel to 'nzdata' slot.
new_nzcoo <- x@nzcoo[-idx0, , drop=FALSE]
BiocGenerics:::replaceSlots(x, nzcoo=new_nzcoo,
nzdata=new_nzdata,
check=FALSE)
}
### Normalizes the 'nzcoo' slot of COO_SparseArray object 'x' by sorting
### its rows and removing duplicated rows from it.
### TODO: The current implementations does not rely on Mindex2Lindex() but
### maybe it should. Would this be more efficient?
.normalize_nzcoo_slot <- function(x)
{
stopifnot(is(x, "COO_SparseArray"))
new_nzcoo <- x@nzcoo
new_nzdata <- x@nzdata
oo <- S4Arrays:::Mindex_order(new_nzcoo)
nzcoo_is_unsorted <- is.unsorted(oo)
if (nzcoo_is_unsorted) {
new_nzcoo <- new_nzcoo[oo, , drop=FALSE]
## Keep 'nzdata' slot parallel to 'nzcoo' slot.
new_nzdata <- new_nzdata[oo]
}
dup_idx <- which(S4Arrays:::Mindex_row_is_repeated(new_nzcoo))
if (length(dup_idx) == 0L) {
if (!nzcoo_is_unsorted) {
## 'x@nzcoo' was already in normal form --> no need to touch 'x'.
return(x)
}
} else {
new_nzcoo <- new_nzcoo[-dup_idx, , drop=FALSE]
## Keep 'nzdata' slot parallel to 'nzcoo' slot.
new_nzdata <- new_nzdata[-dup_idx]
}
## 'x@nzcoo' was not in normal form --> update 'x@nzcoo' and 'x@nzdata'.
BiocGenerics:::replaceSlots(x, nzcoo=new_nzcoo,
nzdata=new_nzdata,
check=FALSE)
}
.normalize_COO_SparseArray <- function(x)
{
## Order of the two calls should not matter but is one order more
## efficient than the other?
.normalize_nzcoo_slot(.normalize_nzdata_slot(x))
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### is_nonzero(), nzcount(), nzwhich(), nzvals(), `nzvals<-`()
###
### Returns a "logical" COO_SparseArray object.
.is_nonzero_COO <- function(x)
{
x <- .normalize_COO_SparseArray(x)
new_nzdata <- rep.int(TRUE, length(nzdata(x)))
BiocGenerics:::replaceSlots(x, nzdata=new_nzdata, check=FALSE)
}
setMethod("is_nonzero", "COO_SparseArray", .is_nonzero_COO)
### length(nzdata(x)) and nrow(nzcoo(x)) are guaranteed to be the same but
### the former should be slightly more efficient.
setMethod("nzcount", "COO_SparseArray",
function(x) length(nzdata(.normalize_COO_SparseArray(x)))
)
### Returns an integer vector of length nzcount(x) if 'arr.ind=FALSE', or
### a matrix with nzcount(x) rows if 'arr.ind=TRUE'.
.nzwhich_COO <- function(x, arr.ind=FALSE)
{
if (!isTRUEorFALSE(arr.ind))
stop(wmsg("'arr.ind' must be TRUE or FALSE"))
ans <- .normalize_COO_SparseArray(x)@nzcoo
if (arr.ind)
return(ans)
Mindex2Lindex(ans, dim=dim(x))
}
setMethod("nzwhich", "COO_SparseArray", .nzwhich_COO)
setMethod("nzvals", "COO_SparseArray",
function(x) .normalize_COO_SparseArray(x)@nzdata
)
### As a side effect, the returned COO_SparseArray object is normalized.
setReplaceMethod("nzvals", "COO_SparseArray",
function(x, value)
{
if (!is.vector(value))
stop(wmsg("replacement value must be a vector"))
x <- .normalize_COO_SparseArray(x)
x@nzdata[] <- value
.normalize_nzdata_slot(x)
}
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Low-level constructor
###
new_COO_SparseArray <- function(dim, dimnames=NULL,
nzcoo=NULL, nzdata=NULL, check=TRUE)
{
stopifnot(is.integer(dim))
if (length(dim) == 2L) {
ans_class <- "COO_SparseMatrix"
} else {
ans_class <- "COO_SparseArray"
}
dimnames <- S4Arrays:::normarg_dimnames(dimnames, dim)
new2(ans_class, dim=dim, dimnames=dimnames,
nzcoo=nzcoo, nzdata=nzdata, check=check)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Constructor
###
.normarg_nzdata <- function(nzdata, length.out)
{
if (is.null(nzdata))
stop(wmsg("'nzdata' cannot be NULL when 'nzcoo' is not NULL"))
if (!is.vector(nzdata))
stop(wmsg("'nzdata' must be a vector"))
## Same logic as S4Vectors:::V_recycle().
nzdata_len <- length(nzdata)
if (nzdata_len == length.out)
return(nzdata)
if (nzdata_len > length.out && nzdata_len != 1L)
stop(wmsg("'length(nzdata)' is greater than 'nrow(nzcoo)'"))
if (nzdata_len == 0L)
stop(wmsg("'length(nzdata)' is 0 but 'nrow(nzcoo)' is not"))
if (length.out %% nzdata_len != 0L)
warning(wmsg("'nrow(nzcoo)' is not a multiple of 'length(nzdata)'"))
rep(nzdata, length.out=length.out)
}
COO_SparseArray <- function(dim, nzcoo=NULL, nzdata=NULL, dimnames=NULL,
check=TRUE)
{
if (!is.numeric(dim))
stop(wmsg("'dim' must be an integer vector"))
if (!is.integer(dim))
dim <- as.integer(dim)
if (is.null(nzcoo)) {
if (is.null(nzdata)) {
nzdata <- logical(0) # vector()
} else if (!(is.vector(nzdata) && length(nzdata) == 0L)) {
stop(wmsg("'nzdata' must be NULL or a vector of length 0 ",
"when 'nzcoo' is NULL"))
}
nzcoo <- matrix(integer(0), ncol=length(dim))
} else {
if (!is.matrix(nzcoo))
stop(wmsg("'nzcoo' must be a matrix"))
if (storage.mode(nzcoo) == "double")
storage.mode(nzcoo) <- "integer"
if (!is.null(dimnames(nzcoo)))
dimnames(nzcoo) <- NULL
nzdata <- .normarg_nzdata(nzdata, nrow(nzcoo))
}
new_COO_SparseArray(dim, dimnames, nzcoo, nzdata, check=check)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### .dense2sparse() and .sparse2dense()
###
### Works on any array-like object 'x' that supports nzwhich(x) and nzvals(x).
### Returns a COO_SparseArray object.
.dense2sparse <- function(x)
{
x_dim <- dim(x)
if (is.null(x_dim))
stop(wmsg("'x' must be an array-like object"))
ans_nzcoo <- nzwhich(x, arr.ind=TRUE) # M-index
ans_nzdata <- nzvals(x)
COO_SparseArray(x_dim, ans_nzcoo, ans_nzdata, dimnames(x), check=FALSE)
}
### 'coo' must be a COO_SparseArray object.
### Return an ordinary array.
.sparse2dense <- function(coo)
{
if (!is(coo, "COO_SparseArray"))
stop(wmsg("'coo' must be a COO_SparseArray object"))
coo_nzdata <- nzdata(coo)
zero <- vector_of_zeros(typeof(coo_nzdata), length=1L)
ans <- array(zero, dim=dim(coo))
ans[nzcoo(coo)] <- coo_nzdata
S4Arrays:::set_dimnames(ans, dimnames(coo))
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### as.array.COO_SparseArray() and default coercion to COO_SparseArray or
### COO_SparseMatrix
###
### S3/S4 combo for as.array.COO_SparseArray
as.array.COO_SparseArray <- function(x, ...) .sparse2dense(x)
setMethod("as.array", "COO_SparseArray", as.array.COO_SparseArray)
setAs("ANY", "COO_SparseArray", function(from) .dense2sparse(from))
setAs("ANY", "COO_SparseMatrix",
function(from) as(.dense2sparse(from), "COO_SparseMatrix")
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Going back and forth between COO_SparseMatrix and [C|R|T]sparseMatrix
###
### --- From COO_SparseMatrix to [C|R|T]sparseMatrix ---
### Note that:
### - Constructing the [C|R|T]sparseMatrix derivative is taken care of by
### the last line which calls one of the 3 specialized *sparseMatrix()
### constructor functions defined in this package (in sparseMatrix-utils.R).
### - We only normalize the '@nzdata' slot of the COO_SparseMatrix
### object, not its '@nzcoo' slot, before turning the object into
### a [C|R|T]sparseMatrix derivative, so the latter is guaranteed
### to have a "clean" '@x' slot (i.e. no zeros in it). In particular, we
### do NOT try to fully normalize the COO_SparseMatrix object as this can
### be costly and is not needed.
### - If the requested layout is "T", then the (i,j,x) triplets in the
### returned TsparseMatrix derivative are not stored in any particular order.
.make_sparseMatrix_from_COO_SparseMatrix <-
function(from, one_letter_type=c("d", "l", "n"), layout=c("C", "R", "T"))
{
stopifnot(is(from, "COO_SparseMatrix"))
one_letter_type <- match.arg(one_letter_type)
layout <- match.arg(layout)
if (one_letter_type != "n") {
to_type <- if (one_letter_type == "d") "double" else "logical"
if (type(from@nzdata) != to_type)
storage.mode(from@nzdata) <- to_type # can introduce zeros
}
## Get rid of zeros originally in '@nzdata' slot or possibly introduced
## by type switching above.
from <- .normalize_nzdata_slot(from)
i <- from@nzcoo[ , 1L]
j <- from@nzcoo[ , 2L]
nzdata <- if (one_letter_type == "n") NULL else from@nzdata
## Call specialized *sparseMatrix() constructor function defined in
## sparseMatrix-utils.R.
FUN <- get(paste0(layout, "sparseMatrix"), mode="function")
FUN(dim(from), i, j, nzdata, dimnames=dimnames(from))
}
setAs("COO_SparseMatrix", "dgCMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "d", "C")
)
setAs("COO_SparseMatrix", "lgCMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "l", "C")
)
setAs("COO_SparseMatrix", "ngCMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "n", "C")
)
setAs("COO_SparseMatrix", "dgRMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "d", "R")
)
setAs("COO_SparseMatrix", "lgRMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "l", "R")
)
setAs("COO_SparseMatrix", "ngRMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "n", "R")
)
setAs("COO_SparseMatrix", "dgTMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "d", "T")
)
setAs("COO_SparseMatrix", "lgTMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "l", "T")
)
setAs("COO_SparseMatrix", "ngTMatrix",
function(from) .make_sparseMatrix_from_COO_SparseMatrix(from, "n", "T")
)
setAs("COO_SparseMatrix", "sparseMatrix",
function(from) as(from, "TsparseMatrix")
)
### --- From [C|R|T]sparseMatrix to COO_SparseMatrix ---
### Note that, of the 3 helper functions below, only the first one is
### guaranteed to return a COO_SparseArray object with a '@nzcoo' slot
### that is normalized.
### Also none of them tries to remove zeros from the '@x' slot of the
### supplied sparseMatrix derivative, so these zeros will eventually end
### up in the '@nzdata' slot of the returned COO_SparseArray object.
.make_COO_SparseMatrix_from_CsparseMatrix <- function(from, use.dimnames=TRUE)
{
ans_dimnames <- if (use.dimnames) dimnames(from) else NULL
i <- from@i + 1L
j <- rep.int(seq_len(ncol(from)), diff(from@p))
ans_nzcoo <- cbind(i, j, deparse.level=0L)
ans_nzdata <- if (is(from, "nMatrix")) nzvals(from) else from@x
new_COO_SparseArray(dim(from), ans_dimnames, ans_nzcoo, ans_nzdata,
check=FALSE)
}
.make_COO_SparseMatrix_from_RsparseMatrix <- function(from, use.dimnames=TRUE)
{
ans_dimnames <- if (use.dimnames) dimnames(from) else NULL
i <- rep.int(seq_len(nrow(from)), diff(from@p))
j <- from@j + 1L
ans_nzcoo <- cbind(i, j, deparse.level=0L)
ans_nzdata <- if (is(from, "nMatrix")) nzvals(from) else from@x
new_COO_SparseArray(dim(from), ans_dimnames, ans_nzcoo, ans_nzdata,
check=FALSE)
}
setAs("dgCMatrix", "COO_SparseMatrix",
function(from) .make_COO_SparseMatrix_from_CsparseMatrix(from)
)
setAs("lgCMatrix", "COO_SparseMatrix",
function(from) .make_COO_SparseMatrix_from_CsparseMatrix(from)
)
setAs("ngCMatrix", "COO_SparseMatrix",
function(from) .make_COO_SparseMatrix_from_CsparseMatrix(from)
)
setAs("dgRMatrix", "COO_SparseMatrix",
function(from) .make_COO_SparseMatrix_from_RsparseMatrix(from)
)
setAs("lgRMatrix", "COO_SparseMatrix",
function(from) .make_COO_SparseMatrix_from_RsparseMatrix(from)
)
setAs("ngRMatrix", "COO_SparseMatrix",
function(from) .make_COO_SparseMatrix_from_RsparseMatrix(from)
)
### We first coerce to CsparseMatrix. Maybe not as efficient as copying
### the (i,j,x) triplets directly from the TsparseMatrix derivative to
### the 'nzcoo' and 'nzdata' slots of the COO_SparseMatrix to return.
### However, doing so would not handle properly a TsparseMatrix derivative
### that contains (i,j,x) triplets with duplicated (i,j) coordinates.
setAs("TsparseMatrix", "COO_SparseMatrix",
function(from) as(as(from, "CsparseMatrix"), "COO_SparseMatrix")
)
setAs("Matrix", "COO_SparseArray", function(from) as(from, "COO_SparseMatrix"))
### Coercing a sparseMatrix derivative (e.g. a CsparseMatrix or TsparseMatrix
### derivative) to SparseMatrix produces an SVT_SparseMatrix object.
### RsparseMatrix is the exception.
setAs("RsparseMatrix", "SparseMatrix",
function(from) as(from, "COO_SparseMatrix")
)
|