1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585
|
### =========================================================================
### SVT_SparseArray objects
### -------------------------------------------------------------------------
###
### Use SVT layout to store the sparse data.
###
### An SVT_SparseArray object stores its nonzero data in a "Sparse Vector
### Tree" (SVT).
###
### If the sparse array is empty (i.e. has no nonzero data), the 'SVT' slot
### must be set to NULL.
###
### IMPORTANT NOTES:
### - All the "leaf vectors" in the SVT are guaranteed to have a
### length <= the first dimension of the SVT_SparseArray object, which
### itself is guaranteed to be <= INT_MAX (2^31 - 1).
### - The cumulated length of the "leaf vectors" in the SVT is the number
### of nonzero elements (i.e. nzcount) in the SVT_SparseArray object.
### There is no upper limit to this number.
### In other words, unlike *gCMatrix objects where this number is
### limited to INT_MAX, an SVT_SparseArray can store an arbitrary number
### of nonzero elements.
###
setClassUnion("NULL_OR_list", c("NULL", "list"))
SVT_VERSION <- 1L
setClass("SVT_SparseArray",
contains="SparseArray",
representation(
type="character",
SVT="NULL_OR_list", # NULL or Sparse Vector Tree (SVT)
.svt_version="integer"
),
prototype(
type="logical",
.svt_version=SVT_VERSION
)
)
setClass("SVT_SparseMatrix",
contains=c("SVT_SparseArray", "SparseMatrix"),
prototype=prototype(
dim=c(0L, 0L),
dimnames=list(NULL, NULL)
)
)
### Not exported (for internal use only).
svt_version <- function(x)
{
stopifnot(is(x, "SVT_SparseArray") || is(x, "NaArray"))
if (.hasSlot(x, ".svt_version")) x@.svt_version else 0L
}
check_svt_version <- function(x)
{
if (svt_version(x) != 0L ||
is(x, "SVT_SparseArray") && is.null(x@SVT) ||
is(x, "NaArray") && is.null(x@NaSVT))
{
return(invisible(NULL))
}
pkg_version <- as.character(packageVersion("SparseArray"))
stop(wmsg("Old ", class(x)[[1L]], " object detected: object uses ",
"version 0 of the SVT internal layout which is not ",
"compatible with versions >= 1.5.0 of the SparseArray ",
"package (your version is ", pkg_version, ")."))
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Validity
###
.validate_SVT_SparseArray <- function(x)
{
if (!isSingleString(x@type))
return("'type' slot must be a single string")
TRUE
}
setValidity2("SVT_SparseArray", .validate_SVT_SparseArray)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Going back and forth between SVT_SparseArray and SVT_SparseMatrix
###
### --- From SVT_SparseArray to SVT_SparseMatrix ---
### The user should NOT be able to promote an SVT_SparseArray object to
### SVT_SparseMatrix. Problem is that the automatic coercion method from
### SVT_SparseArray to SVT_SparseMatrix silently returns a broken object
### (unfortunately these dummy automatic coercion methods don't bother to
### validate the object they return). So we overwrite it with a method that
### will fail (as expected) thanks to the validity method for SparseMatrix
### objects.
setAs("SVT_SparseArray", "SVT_SparseMatrix",
function(from) new("SVT_SparseMatrix", from)
)
### --- From SVT_SparseMatrix to SVT_SparseArray ---
### The user should NOT be able to demote an SVT_SparseMatrix object to
### SVT_SparseArray, so 'as(x, "SVT_SparseArray")' and 'as(x, "SparseArray")'
### should fail or do nothing when 'x' is an SVT_SparseMatrix object, even
### when called with 'strict=TRUE'. Making these coercions behave like no-ops
### seems to be the easiest (and safest) way to go.
setAs("SVT_SparseMatrix", "SVT_SparseArray", function(from) from) # no-op
### Do NOT use setAs() here! setAs() does really bad things if used to define
### this coercion method e.g. for some reason it calls setIs() internally to
### make SVT_SparseMatrix a **direct** extension of SparseArray, thus
### altering (and breaking) our class hierarchy. This is not only conceptually
### wrong but it also seems to break dispatch e.g. calling 'show(x)' on
### SVT_SparseMatrix object 'x' does not find the method for SparseArray
### objects despite 'is(x, "SparseArray")' being TRUE.
### Worst part is that this seems to be a "feature" (apparently setAs() tries
### to be really smart here!) but it's just a big mess.
setMethod("coerce", c("SVT_SparseMatrix", "SparseArray"),
function(from, to, strict=TRUE) from # no-op
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### type() getter and setter
###
setMethod("type", "SVT_SparseArray", function(x) x@type)
.set_SVT_SparseArray_type <- function(x, value)
{
stopifnot(is(x, "SVT_SparseArray"))
check_svt_version(x)
value <- S4Arrays:::normarg_array_type(value, "the supplied type")
x_type <- type(x)
if (value == x_type)
return(x)
new_SVT <- SparseArray.Call("C_set_SVT_type",
x@dim, x@type, x@SVT, FALSE, value)
BiocGenerics:::replaceSlots(x, type=value, SVT=new_SVT, check=FALSE)
}
setReplaceMethod("type", "SVT_SparseArray", .set_SVT_SparseArray_type)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### is_nonzero(), nzcount(), nzwhich(), nzvals(), `nzvals<-`()
###
### Returns a "logical" SVT_SparseArray object.
.is_nonzero_SVT <- function(x)
{
stopifnot(is(x, "SVT_SparseArray"))
check_svt_version(x)
new_SVT <- SparseArray.Call("C_is_nonzero_SVT", x@dim, x@SVT)
BiocGenerics:::replaceSlots(x, type="logical", SVT=new_SVT, check=FALSE)
}
setMethod("is_nonzero", "SVT_SparseArray", .is_nonzero_SVT)
### Note that like for the length of atomic vectors in base R, the "nonzero
### count" will be returned as a double if it's > .Machine$integer.max
.nzcount_SVT <- function(x)
{
stopifnot(is(x, "SVT_SparseArray"))
check_svt_version(x)
SparseArray.Call("C_nzcount_SVT", x@dim, x@SVT)
}
setMethod("nzcount", "SVT_SparseArray", .nzcount_SVT)
### Returns an integer vector of length nzcount(x) if 'arr.ind=FALSE', or
### a matrix with nzcount(x) rows if 'arr.ind=TRUE'.
.nzwhich_SVT <- function(x, arr.ind=FALSE)
{
stopifnot(is(x, "SVT_SparseArray"))
check_svt_version(x)
if (!isTRUEorFALSE(arr.ind))
stop(wmsg("'arr.ind' must be TRUE or FALSE"))
SparseArray.Call("C_nzwhich_SVT", x@dim, x@SVT, arr.ind)
}
setMethod("nzwhich", "SVT_SparseArray", .nzwhich_SVT)
### TODO: Implement optimized nzvals() and `nzvals<-`() methods for
### SVT_SparseArray objects.
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Low-level constructor
###
new_SVT_SparseArray <- function(dim, dimnames=NULL,
type="logical", SVT=NULL, check=TRUE)
{
stopifnot(is.integer(dim))
if (length(dim) == 2L) {
ans_class <- "SVT_SparseMatrix"
} else {
ans_class <- "SVT_SparseArray"
}
dimnames <- S4Arrays:::normarg_dimnames(dimnames, dim)
new2(ans_class, dim=dim, dimnames=dimnames,
type=type, SVT=SVT, check=check)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Going back and forth between SVT_SparseArray objects and ordinary arrays
###
.from_SVT_SparseArray_to_array <- function(from)
{
stopifnot(is(from, "SVT_SparseArray"))
check_svt_version(from)
SparseArray.Call("C_from_SVT_SparseArray_to_Rarray",
from@dim, dimnames(from), from@type, from@SVT, FALSE)
}
### S3/S4 combo for as.array.SVT_SparseArray
as.array.SVT_SparseArray <- function(x, ...) .from_SVT_SparseArray_to_array(x)
setMethod("as.array", "SVT_SparseArray", as.array.SVT_SparseArray)
.build_SVT_SparseArray_from_array <- function(x, dimnames=NULL, type=NA)
{
stopifnot(is.array(x))
if (is.null(dimnames)) {
ans_dimnames <- dimnames(x)
} else {
ans_dimnames <- S4Arrays:::normarg_dimnames(dimnames, dim(x))
}
if (identical(type, NA))
type <- type(x)
ans_SVT <- SparseArray.Call("C_build_SVT_from_Rarray", x, type, FALSE)
new_SVT_SparseArray(dim(x), ans_dimnames, type, ans_SVT, check=FALSE)
}
setAs("array", "SVT_SparseArray",
function(from) .build_SVT_SparseArray_from_array(from)
)
setAs("array", "SparseArray",
function(from) .build_SVT_SparseArray_from_array(from)
)
setAs("matrix", "SVT_SparseMatrix",
function(from) .build_SVT_SparseArray_from_array(from)
)
setAs("matrix", "SparseMatrix",
function(from) .build_SVT_SparseArray_from_array(from)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Make an SVT_SparseMatrix object from CSC components
###
### NOT exported but used in the HDF5Array package!
### 'row_indices' must be an integer vector containing 0-based or 1-based
### row indices. Note that the indices in 'row_indices' are not required
### to be increasing within columns. However, 'row_indices' should NOT
### contain duplicates within columns. This is NOT checked!
make_SVT_SparseMatrix_from_CSC <- function(dim, indptr, data, row_indices,
indices.are.1based=FALSE,
dimnames=NULL)
{
stopifnot(is.integer(row_indices), isTRUEorFALSE(indices.are.1based))
ans_SVT <- SparseArray.Call("C_build_SVT_from_CSC",
dim, indptr, data, row_indices,
indices.are.1based)
new_SVT_SparseArray(dim, dimnames, type(data), ans_SVT, check=FALSE)
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Going back and forth between SVT_SparseMatrix and CsparseMatrix
###
.make_CsparseMatrix_from_SVT_SparseMatrix <- function(from, to_type=NULL)
{
stopifnot(is(from, "SVT_SparseMatrix"))
check_svt_version(from)
if (!is.null(to_type)) {
## Late type switching tends to be slightly more memory efficient.
## However, switching to a smaller type (e.g. from "complex" to "double"
## or from "integer" to "logical") can introduce zeros. In this case,
## we must switch the type early. Otherwise we will end up with zeros
## in the "x" slot of the resulting dgCMatrix or lgCMatrix object.
switch_type_early <- coercion_can_introduce_zeros(from@type, to_type)
if (switch_type_early)
type(from) <- to_type # early type switching
}
## Returns 'ans_p', 'ans_i', and 'ans_x', in a list of length 3.
C_ans <- SparseArray.Call("C_from_SVT_SparseMatrix_to_CsparseMatrix",
from@dim, from@type, from@SVT, is.null(to_type))
ans_p <- C_ans[[1L]]
ans_i <- C_ans[[2L]]
ans_x <- C_ans[[3L]] # NULL (if 'is.null(to_type)') or same type as 'from'
if (!is.null(to_type)) {
## This type switching is safe only if it does not introduce zeros.
if (!switch_type_early)
storage.mode(ans_x) <- to_type # late type switching
}
new_CsparseMatrix(from@dim, ans_p, ans_i, ans_x, dimnames=from@dimnames)
}
.from_SVT_SparseMatrix_to_dgCMatrix <- function(from)
.make_CsparseMatrix_from_SVT_SparseMatrix(from, "double")
.from_SVT_SparseMatrix_to_lgCMatrix <- function(from)
.make_CsparseMatrix_from_SVT_SparseMatrix(from, "logical")
.from_SVT_SparseMatrix_to_ngCMatrix <- function(from)
.make_CsparseMatrix_from_SVT_SparseMatrix(from)
setAs("SVT_SparseMatrix", "dgCMatrix", .from_SVT_SparseMatrix_to_dgCMatrix)
setAs("SVT_SparseMatrix", "lgCMatrix", .from_SVT_SparseMatrix_to_lgCMatrix)
setAs("SVT_SparseMatrix", "ngCMatrix", .from_SVT_SparseMatrix_to_ngCMatrix)
.build_SVT_SparseMatrix_from_CsparseMatrix <- function(x, dimnames=NULL,
type=NA)
{
stopifnot(is(x, "CsparseMatrix"))
## Turn any [d|l|n]gCMatrix derivative (e.g. TestColMatrix object 'y'
## defined in alabaster.matrix/tests/testthat/test-SparseMatrix.R) into
## a [d|l|n]gCMatrix **instance**. We should not need to do this. Only
## reason we do it is because we don't know how to test for inheritance
## at the C level (Rf_inherits() doesn't seem to work properly on S4
## objects). More precisely, without this coercion, C function
## get_gCMatrix_subtype() defined in src/SVT_SparseArray_class.c won't
## be able to recognize a [d|l|n]gCMatrix derivative so will reject it.
x <- as(x, "CsparseMatrix")
if (is.null(dimnames)) {
ans_dimnames <- dimnames(x)
} else {
ans_dimnames <- S4Arrays:::normarg_dimnames(dimnames, dim(x))
}
if (identical(type, NA))
type <- type(x)
ans_SVT <- SparseArray.Call("C_build_SVT_from_CsparseMatrix", x, type)
new_SVT_SparseArray(dim(x), ans_dimnames, type, ans_SVT, check=FALSE)
}
setAs("CsparseMatrix", "SVT_SparseMatrix",
function(from) .build_SVT_SparseMatrix_from_CsparseMatrix(from)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Going back and forth between SVT_SparseMatrix and TsparseMatrix
###
setAs("SVT_SparseMatrix", "dgTMatrix",
function(from) as(as(from, "dgCMatrix"), "TsparseMatrix")
)
setAs("SVT_SparseMatrix", "lgTMatrix",
function(from) as(as(from, "lgCMatrix"), "TsparseMatrix")
)
setAs("SVT_SparseMatrix", "ngTMatrix",
function(from) as(as(from, "ngCMatrix"), "TsparseMatrix")
)
setAs("TsparseMatrix", "SVT_SparseMatrix",
function(from) as(as(from, "CsparseMatrix"), "SVT_SparseMatrix")
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Coercion from a Matrix derivative to SparseMatrix or SparseArray
###
### Coercing a sparseMatrix derivative (e.g. a CsparseMatrix or TsparseMatrix
### derivative) to SparseMatrix produces an SVT_SparseMatrix object.
### RsparseMatrix is the exception (see COO_SparseArray-class.R).
setAs("sparseMatrix", "SparseMatrix",
function(from) as(from, "SVT_SparseMatrix")
)
setAs("Matrix", "SparseArray",
function(from) as(from, "SparseMatrix")
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Going back and forth between SVT_SparseArray and COO_SparseArray objects
###
.from_SVT_SparseArray_to_COO_SparseArray <- function(from)
{
stopifnot(is(from, "SVT_SparseArray"))
check_svt_version(from)
## Returns 'ans_nzcoo' and 'ans_nzdata' in a list of length 2.
C_ans <- SparseArray.Call("C_from_SVT_SparseArray_to_COO_SparseArray",
from@dim, from@type, from@SVT)
ans_nzcoo <- C_ans[[1L]]
ans_nzdata <- C_ans[[2L]]
new_COO_SparseArray(from@dim, from@dimnames,
ans_nzcoo, ans_nzdata, check=FALSE)
}
setAs("SVT_SparseArray", "COO_SparseArray",
.from_SVT_SparseArray_to_COO_SparseArray
)
setAs("SVT_SparseMatrix", "COO_SparseMatrix",
.from_SVT_SparseArray_to_COO_SparseArray
)
.build_SVT_SparseArray_from_COO_SparseArray <- function(x, dimnames=NULL,
type=NA)
{
stopifnot(is(x, "COO_SparseArray"))
if (is.null(dimnames)) {
ans_dimnames <- dimnames(x)
} else {
ans_dimnames <- S4Arrays:::normarg_dimnames(dimnames, dim(x))
}
if (identical(type, NA)) {
type <- type(x)
} else {
## Some quick testing/benchmarking seemed to suggest that it's
## slightly more efficient to change the type of the input
## COO_SparseArray object than that of the output SVT_SparseArray
## object.
type(x) <- type
}
## We start with an allzero SVT_SparseArray object and subassign
## the nonzero data to it.
ans <- new_SVT_SparseArray(x@dim, ans_dimnames, type, check=FALSE)
ans[x@nzcoo] <- x@nzdata
ans
}
setAs("COO_SparseArray", "SVT_SparseArray",
function(from) .build_SVT_SparseArray_from_COO_SparseArray(from)
)
setAs("COO_SparseMatrix", "SVT_SparseMatrix",
function(from) .build_SVT_SparseArray_from_COO_SparseArray(from)
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Default coercions to SparseArray or SVT_SparseArray
###
### Given a DelayedArray object or any out-of-memory array-like object 'x':
### - as.array(x) is the standard way to realize it as an ordinary array, that
### is, as a **dense** array);
### - as(x, "SparseArray") is the standard way to realize it in memory as a
### SparseArray derivative (SVT_SparseArray or COO_SparseArray object), that
### is as a **sparse** array;
### - as(x, "SVT_SparseArray") is the standard way to realize it in memory
### as an SVT_SparseArray object.
###
### Similar to as.array() method for Array object (defined in the S4Arrays
### package) but based on extract_sparse_array() instead of extract_array(),
### and without the 'drop' argument.
### Returns an SVT_SparseArray or COO_SparseArray object.
.as_SparseArray <- function(x)
{
if (!is_sparse(x)) {
## Go thru .dense2sparse().
return(as(x, "COO_SparseArray"))
}
index <- vector("list", length=length(dim(x)))
ans <- extract_sparse_array(x, index)
S4Arrays:::set_dimnames(ans, dimnames(x))
}
setAs("ANY", "SparseArray", function(from) .as_SparseArray(from))
.as_SparseMatrix <- function(x)
{
x_ndim <- length(dim(x))
if (x_ndim != 2L)
stop(wmsg("cannot coerce ", class(x)[[1L]], " object ",
"with ", x_ndim, " dimensions to SparseMatrix ",
"(object to coerce must have 2 dimensions)"))
.as_SparseArray(x)
}
setAs("ANY", "SparseMatrix", function(from) .as_SparseMatrix(from))
setAs("ANY", "SVT_SparseArray",
function(from) as(as(from, "SparseArray"), "SVT_SparseArray")
)
setAs("ANY", "SVT_SparseMatrix",
function(from) as(as(from, "SparseMatrix"), "SVT_SparseMatrix")
)
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### The SVT_SparseArray() constructor
###
.new_empty_SVT_SparseArray <- function(type=NA)
{
if (identical(type, NA))
type <- "logical"
new2("SVT_SparseArray", type=type, check=FALSE)
}
.SVT_SparseArray <- function(x, dimnames=NULL, type=NA)
{
if (is.array(x))
return(.build_SVT_SparseArray_from_array(x,
dimnames=dimnames, type=type))
if (is(x, "CsparseMatrix"))
return(.build_SVT_SparseMatrix_from_CsparseMatrix(x,
dimnames=dimnames, type=type))
if (is(x, "COO_SparseArray"))
return(.build_SVT_SparseArray_from_COO_SparseArray(x,
dimnames=dimnames, type=type))
ans <- as(x, "SVT_SparseArray")
if (!is.null(dimnames))
ans <- S4Arrays:::set_dimnames(ans, dimnames)
if (!identical(type, NA))
type(ans) <- type
ans
}
SVT_SparseArray <- function(x, dim=NULL, dimnames=NULL, type=NA)
{
if (!identical(type, NA))
type <- S4Arrays:::normarg_array_type(type, "the requested type")
if (is.null(dim)) {
if (missing(x))
return(.new_empty_SVT_SparseArray(type))
return(.SVT_SparseArray(x, dimnames=dimnames, type=type))
}
dim <- S4Arrays:::normarg_dim(dim)
ans <- new_SVT_SparseArray(dim, dimnames=dimnames, check=FALSE)
if (!missing(x)) {
nzidx <- nzwhich(x)
ans[nzidx] <- as.vector(x[nzidx])
}
if (!identical(type, NA))
type(ans) <- type
ans
}
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### The SparseArray() constructor
###
### Preference is given to the SVT_SparseArray representation.
SparseArray <- function(x, type=NA)
{
if (!identical(type, NA))
type <- S4Arrays:::normarg_array_type(type, "the requested type")
if (missing(x))
return(.new_empty_SVT_SparseArray(type))
if (is(x, "SparseArray")) {
if (is(x, "SVT_SparseArray"))
check_svt_version(x)
if (!identical(type, NA))
type(x) <- type
return(x)
}
## Calling SparseArray() on a sparseMatrix derivative (e.g. on a
## CsparseMatrix or TsparseMatrix object) produces an SVT_SparseMatrix
## object. RsparseMatrix is the exception.
if (is(x, "RsparseMatrix")) {
ans <- as(x, "COO_SparseMatrix")
if (!identical(type, NA))
type(ans) <- type
return(ans)
}
.SVT_SparseArray(x, type=type)
}
|