1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177
|
### =========================================================================
### Miscellaneous operations on SparseArray objects
### -------------------------------------------------------------------------
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Various "unary isometric" array transformations
###
### A "unary isometric" array transformation is a transformation that returns
### an array-like object with the same dimensions as the input and where each
### element is the result of applying a function to the corresponding element
### in the input.
###
### Note that:
### - Some "unary isometric" transformations preserve sparsity (e.g. is.na(),
### nchar(), round(), sqrt(), log1p(), etc...) and others don't (e.g.
### is.finite(), !, log(), etc..). SparseArray objects only need to support
### the former.
### - All operations from the 'Math' and 'Math2' groups are "unary isometric"
### transformations (see '?S4groupGeneric'). The corresponding methods for
### SparseArray objects are implemented in R/SparseArray-Math-methods.R
### - All the "unary isometric" methods implemented below return an array-like
### object of the same class as the input (endomorphism).
### --- Methods for COO_SparseArray objects ---
.isoFUN_COO <- function(isoFUN, x, ...)
{
GENERIC <- match.fun(isoFUN)
new_nzdata <- GENERIC(x@nzdata, ...)
BiocGenerics:::replaceSlots(x, nzdata=new_nzdata, check=FALSE)
}
setMethod("is.na", "COO_SparseArray",
function(x) .isoFUN_COO("is.na", x)
)
setMethod("is.nan", "COO_SparseArray",
function(x) .isoFUN_COO("is.nan", x)
)
setMethod("is.infinite", "COO_SparseArray",
function(x) .isoFUN_COO("is.infinite", x)
)
setMethod("tolower", "COO_SparseArray",
function(x) .isoFUN_COO("tolower", x)
)
setMethod("toupper", "COO_SparseArray",
function(x) .isoFUN_COO("toupper", x)
)
setMethod("nchar", "COO_SparseArray",
function(x, type="chars", allowNA=FALSE, keepNA=NA)
.isoFUN_COO("nchar", x, type=type, allowNA=allowNA, keepNA=keepNA)
)
### --- Methods for SVT_SparseArray objects ---
### Returns a "logical" SVT_SparseArray object.
.isFUN_SVT <- function(isFUN, x)
{
stopifnot(is(x, "SVT_SparseArray"))
check_svt_version(x)
new_SVT <- SparseArray.Call("C_SVT_apply_isFUN",
x@dim, x@type, x@SVT, isFUN)
BiocGenerics:::replaceSlots(x, type="logical", SVT=new_SVT, check=FALSE)
}
setMethod("is.na", "SVT_SparseArray",
function(x) .isFUN_SVT("is.na", x)
)
setMethod("is.nan", "SVT_SparseArray",
function(x) .isFUN_SVT("is.nan", x)
)
setMethod("is.infinite", "SVT_SparseArray",
function(x) .isFUN_SVT("is.infinite", x)
)
### TODO: Support more methods!
### - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
### Various "N-ary isometric" array transformations
###
### An "N-ary isometric" array transformation is a transformation that takes
### one or more array-like objects of the same dimensions (a.k.a. conformable
### arrays) and returns an array-like object of the same dimensions.
###
### Note that:
### - All operations from the 'Ops' group are "N-ary isometric"
### transformations (see '?S4groupGeneric'). The corresponding
### methods for SparseArray objects are implemented in files
### R/SparseArray-[Arith|Compare|Logic]-methods.R.
### - If all the input arrays have the same class then the "N-ary isometric"
### methods implemented below return an array-like object of that class
### (endomorphism).
### Binary pmin() and pmax() between two conformable array-like objects.
### We go for a pure R implementation for now that relies on `<` (or `>`),
### nzwhich(), linear subsetting (`[`), linear subassignment (`[<-`), and
### is.na(), so it works on any array-like object that supports these
### operations e.g. on ordinary arrays or dgCMatrix objects. However it
### won't work on COO_SparseArray objects because these objects don't support
### some of the required operations like `<` or linear subsetting. Sparsity
### is preserved all along so it's pretty efficient. Of course nothing would
### beat a C implementation but this is good enough for now.
### About base::pmin() and base::pmax(): These are also pure R implementations
### that would **almost** work on SVT_SparseArray objects except that they
### rely on logical negation (!) of the array which SVT_SparseArray objects
### don't support because it does NOT preserve sparsity. However this what
### pmin()/pmax() use on dgCMatrix objects (there are no dedicated pmin()
### or pmax() methods for dgCMatrix objects as of Matrix 1.7-0), which is
### not very efficient.
.pminmax2 <- function(op, x, y, na.rm=FALSE)
{
stopifnot(is(x, "SVT_SparseArray"), is(y, "SVT_SparseArray"))
op <- match.fun(op)
ans <- x
replace_idx <- nzwhich(op(y, x))
## This subassignment will take care of setting the type of 'ans'
## to the "biggest" of 'type(x)' and 'type(y)' so it's a good
## idea to do it even if there's nothing to replace (i.e. even
## if 'length(replace_idx)' is 0).
ans[replace_idx] <- y[replace_idx]
if (na.rm) {
## The above replacement propagated NAs from 'y' to 'ans'.
## We need to revert that.
is_na <- is.na(y)
} else {
## The above replacement may have replaced NAs in 'ans' with
## non-NA values from 'y'. We need to revert that.
is_na <- is.na(x)
}
restore_idx <- nzwhich(is_na)
ans[restore_idx] <- x[restore_idx]
ans_dimnames <- S4Arrays:::get_first_non_NULL_dimnames(list(x, y))
S4Arrays:::set_dimnames(ans, ans_dimnames)
}
.pmin2 <- function(x, y, na.rm=FALSE) .pminmax2("<", x, y, na.rm=na.rm)
.pmax2 <- function(x, y, na.rm=FALSE) .pminmax2(">", x, y, na.rm=na.rm)
.psummarize <- function(NaryFUN, binaryFUN, ..., na.rm=FALSE)
{
NaryFUN <- match.fun(NaryFUN)
binaryFUN <- match.fun(binaryFUN)
objects <- S4Vectors:::delete_NULLs(list(...))
if (!isTRUEorFALSE(na.rm))
stop(wmsg("'na.rm' must be TRUE or FALSE"))
if (length(objects) == 0L)
stop(wmsg("no input")) # should never happen
x <- objects[[1L]]
if (length(objects) == 1L)
return(x) # no-op
if (length(objects) == 2L) {
y <- objects[[2L]]
} else {
## Recursive.
y <- do.call(NaryFUN, c(objects[-1L], list(na.rm=na.rm)))
}
binaryFUN(x, y, na.rm=na.rm)
}
### Method dispatch will select these methods if and only if **all** the
### objects passed thru the ellipsis (...) are SparseArray derivatives.
### Note that even though the methods are defined for SparseArray objects,
### they will fail on COO_SparseArray objects (see comment for "Binary pmin()
### and pmax() between two conformable array-like objects" above).
setMethod("pmin", "SparseArray",
function(..., na.rm=FALSE) .psummarize("pmin", .pmin2, ..., na.rm=na.rm)
)
setMethod("pmax", "SparseArray",
function(..., na.rm=FALSE) .psummarize("pmax", .pmax2, ..., na.rm=na.rm)
)
|