1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
## ----setup, include=FALSE-----------------------------------------------------
library(BiocStyle)
## ----eval=FALSE---------------------------------------------------------------
# if (!require("BiocManager", quietly=TRUE))
# install.packages("BiocManager")
# BiocManager::install("SparseArray")
## ----message=FALSE------------------------------------------------------------
library(SparseArray)
## -----------------------------------------------------------------------------
svt1 <- SVT_SparseArray(dim=c(6, 4))
svt1[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L
svt1
svt2 <- SVT_SparseArray(dim=5:3)
svt2[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L
svt2
## -----------------------------------------------------------------------------
# Coerce a dgCMatrix object to SVT_SparseArray:
dgcm <- Matrix::rsparsematrix(12, 5, density=0.15)
svt3 <- as(dgcm, "SVT_SparseArray")
# Coerce a TENxMatrix object to SVT_SparseArray:
suppressMessages(library(HDF5Array))
M <- writeTENxMatrix(svt3)
svt3b <- as(M, "SVT_SparseArray")
# Sanity check:
stopifnot(identical(svt3, svt3b))
## -----------------------------------------------------------------------------
svt3 <- SVT_SparseArray(dgcm) # same as as(dgcm, "SVT_SparseArray")
svt3b <- SVT_SparseArray(M) # same as as(M, "SVT_SparseArray")
## -----------------------------------------------------------------------------
# Coerce an ordinary matrix to SparseArray:
a <- array(rpois(80, lambda=0.35), dim=c(5, 8, 2))
class(as(a, "SparseArray")) # SVT_SparseArray
# Coerce a dgCMatrix object to SparseArray:
svt3 <- as(dgcm, "SparseArray")
class(svt3) # SVT_SparseArray
# Coerce a TENxMatrix object to SparseArray:
svt3b <- as(M, "SparseArray")
class(svt3) # SVT_SparseArray
## -----------------------------------------------------------------------------
SparseArray(a) # same as as(a, "SparseArray")
svt3 <- SparseArray(dgcm) # same as as(dgcm, "SparseArray")
svt3b <- SparseArray(M) # same as as(M, "SparseArray")
## -----------------------------------------------------------------------------
ngrm <- sparseMatrix(i=c(1, 5, 5, 6), j=c(4, 2, 3, 2), repr="R")
class(ngrm) # ngRMatrix
class(SparseArray(ngrm)) # COO_SparseMatrix
## -----------------------------------------------------------------------------
svt <- as(SparseArray(ngrm), "SVT_SparseArray")
class(svt) # SVT_SparseMatrix
## -----------------------------------------------------------------------------
as.array(svt1) # same as as.matrix(svt1)
as.array(svt2)
## -----------------------------------------------------------------------------
dim(svt2)
length(svt2)
dimnames(svt2) <- list(NULL, letters[1:4], LETTERS[1:3])
svt2
## -----------------------------------------------------------------------------
type(svt1)
type(svt1) <- "double"
svt1
is_sparse(svt1)
## -----------------------------------------------------------------------------
is_nonzero(svt1)
## Get the number of nonzero array elements in 'svt1':
nzcount(svt1)
## Extract the "linear indices" of the nonzero array elements in 'svt1':
nzwhich(svt1)
## Extract the "array indices" (a.k.a. "array coordinates") of the
## nonzero array elements in 'svt1':
nzwhich(svt1, arr.ind=TRUE)
## Extract the values of the nonzero array elements in 'svt1':
nzvals(svt1)
## -----------------------------------------------------------------------------
svt2[5:3, , "C"]
## -----------------------------------------------------------------------------
type(svt2)
svt2[5, 1, 3] <- NaN
type(svt2)
## -----------------------------------------------------------------------------
anyNA(svt2)
range(svt2, na.rm=TRUE)
mean(svt2, na.rm=TRUE)
var(svt2, na.rm=TRUE)
## -----------------------------------------------------------------------------
signif((svt1^1.5 + svt1) %% 100 - 0.6 * svt1, digits=2)
## -----------------------------------------------------------------------------
t(svt1)
## -----------------------------------------------------------------------------
aperm(svt2)
## -----------------------------------------------------------------------------
svt4 <- poissonSparseMatrix(6, 2, density=0.5)
cbind(svt1, svt4)
## -----------------------------------------------------------------------------
svt5a <- poissonSparseArray(c(5, 6, 2), density=0.4)
svt5b <- poissonSparseArray(c(5, 6, 5), density=0.2)
svt5c <- poissonSparseArray(c(5, 6, 4), density=0.2)
abind(svt5a, svt5b, svt5c)
svt6a <- aperm(svt5a, c(1, 3:2))
svt6b <- aperm(svt5b, c(1, 3:2))
svt6c <- aperm(svt5c, c(1, 3:2))
abind(svt6a, svt6b, svt6c, along=2)
## -----------------------------------------------------------------------------
svt7 <- SVT_SparseArray(dim=5:6, dimnames=list(letters[1:5], LETTERS[1:6]))
svt7[c(2, 6, 12:17, 22:30)] <- 101:117
colVars(svt7)
## -----------------------------------------------------------------------------
colVars(svt2)
colVars(svt2, dims=2)
colAnyNAs(svt2)
colAnyNAs(svt2, dims=2)
## -----------------------------------------------------------------------------
rowsum(svt7, group=c(1:3, 2:1))
colsum(svt7, group=c("A", "B", "A", "B", "B", "A"))
## -----------------------------------------------------------------------------
svt7 %*% svt4
## -----------------------------------------------------------------------------
crossprod(svt4)
## -----------------------------------------------------------------------------
randomSparseArray(c(5, 6, 2), density=0.5)
poissonSparseArray(c(5, 6, 2), density=0.5)
## -----------------------------------------------------------------------------
csv_file <- tempfile()
writeSparseCSV(svt7, csv_file)
## -----------------------------------------------------------------------------
readSparseCSV(csv_file)
## -----------------------------------------------------------------------------
suppressMessages(library(HDF5Array))
suppressMessages(library(ExperimentHub))
hub <- ExperimentHub()
oneM <- TENxMatrix(hub[["EH1039"]], group="mm10")
oneM
## -----------------------------------------------------------------------------
nzcount(oneM)
## ----eval=FALSE---------------------------------------------------------------
# # WARNING: This takes a couple of minutes on a modern laptop, and will
# # consume about 25Gb of RAM!
# svt <- as(oneM, "SVT_SparseArray")
## ----eval=FALSE---------------------------------------------------------------
# # This will fail because 'oneM' has more than 2^31 nonzero values!
# as(oneM, "dgCMatrix")
## -----------------------------------------------------------------------------
sessionInfo()
|