1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501
|
---
title: "SparseArray objects"
author:
- name: Hervé Pagès
affiliation: Fred Hutchinson Cancer Research Center, Seattle, WA
date: "Compiled `r BiocStyle::doc_date()`; Modified 27 September 2024"
package: SparseArray
vignette: |
%\VignetteIndexEntry{SparseArray objects}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
output:
BiocStyle::html_document
---
```{r setup, include=FALSE}
library(BiocStyle)
```
# Introduction
`r Biocpkg("SparseArray")` is an infrastructure package that enables
high-performance sparse data representation and manipulation in R.
The workhorse of the package is an array-like container that allows
efficient in-memory representation of multidimensional sparse data in R.
# Install and load the package
Use `BiocManager::install()` to install the `r Biocpkg("SparseArray")`
package:
```{r, eval=FALSE}
if (!require("BiocManager", quietly=TRUE))
install.packages("BiocManager")
BiocManager::install("SparseArray")
```
Load the package:
```{r, message=FALSE}
library(SparseArray)
```
# The SparseArray virtual class and its two concrete subclasses
The package defines the SparseArray virtual class and two concrete
subclasses: COO\_SparseArray and SVT\_SparseArray.
Each subclass uses its own internal representation of the nonzero
multidimensional data: the "COO layout" and the "SVT layout", respectively.
Note that the SparseArray virtual class makes no assumption about the
internal representation of the nonzero data, so it could easily be
extended by other S4 classes that use a different layout for the
nonzero data.
This vignette focuses on the SVT\_SparseArray container, which is
the most memory-efficient and feature-complete of the two SparseArray
subclasses. The COO\_SparseArray class is only provided to support
some rare use-cases. In other words, using SVT\_SparseArray objects
is almost always preferred over using COO\_SparseArray objects.
# SVT\_SparseArray objects
The SVT\_SparseArray container provides an efficient representation of the
nonzero multidimensional data via a novel layout called the "SVT layout".
Note that SVT\_SparseArray objects mimic as much as possible the behavior of
ordinary matrix or array objects in base R. In particular, they suppport
most of the "standard matrix and array API" defined in base R and in the
`r Biocpkg("matrixStats")` package from CRAN.
## Construction
SVT\_SparseArray objects can be constructed in many ways. A common way
is to start with an empty object and to subassign nonzero values to it:
```{r}
svt1 <- SVT_SparseArray(dim=c(6, 4))
svt1[c(1:2, 8, 10, 15:17, 24)] <- (1:8)*10L
svt1
svt2 <- SVT_SparseArray(dim=5:3)
svt2[c(1:2, 8, 10, 15:17, 20, 24, 40, 56:60)] <- (1:15)*10L
svt2
```
Another way is to coerce a matrix- or array-like object to
SVT\_SparseArray:
```{r}
# Coerce a dgCMatrix object to SVT_SparseArray:
dgcm <- Matrix::rsparsematrix(12, 5, density=0.15)
svt3 <- as(dgcm, "SVT_SparseArray")
# Coerce a TENxMatrix object to SVT_SparseArray:
suppressMessages(library(HDF5Array))
M <- writeTENxMatrix(svt3)
svt3b <- as(M, "SVT_SparseArray")
# Sanity check:
stopifnot(identical(svt3, svt3b))
```
Alternatively, these coercions can be done by simply passing the object
to coerce to the `SVT_SparseArray()` constructor function:
```{r}
svt3 <- SVT_SparseArray(dgcm) # same as as(dgcm, "SVT_SparseArray")
svt3b <- SVT_SparseArray(M) # same as as(M, "SVT_SparseArray")
```
See `?SVT_SparseArray` for more information about the `SVT_SparseArray()`
constructor function and additional examples.
## SVT\_SparseArray vs COO\_SparseArray
As mentioned earlier, SVT\_SparseArray objects are almost always preferred
over using COO\_SparseArray objects. Coercing to SparseArray or using
the `SparseArray()` constructor function reflects this preference i.e.
in both cases the actual class of the returned SparseArray derivative
will almost always be SVT\_SparseArray (or SVT\_SparseMatrix). Except
in the rare situation where returning a COO\_SparseArray object is a more
natural fit for the input object.
For example coercing the following objects to SparseArray will _always_
produce an SVT\_SparseArray object:
```{r}
# Coerce an ordinary matrix to SparseArray:
a <- array(rpois(80, lambda=0.35), dim=c(5, 8, 2))
class(as(a, "SparseArray")) # SVT_SparseArray
# Coerce a dgCMatrix object to SparseArray:
svt3 <- as(dgcm, "SparseArray")
class(svt3) # SVT_SparseArray
# Coerce a TENxMatrix object to SparseArray:
svt3b <- as(M, "SparseArray")
class(svt3) # SVT_SparseArray
```
Also using the `SparseArray()` constructor function on these objects will
_always_ produce an SVT\_SparseArray object:
```{r}
SparseArray(a) # same as as(a, "SparseArray")
svt3 <- SparseArray(dgcm) # same as as(dgcm, "SparseArray")
svt3b <- SparseArray(M) # same as as(M, "SparseArray")
```
This is actually the most convenient way to turn an ordinary matrix or
array, or a dgCMatrix object, or a TENxMatrix object, into an SVT\_SparseArray
object.
One situation where `as(x, "SparseArray")` or `SparseArray(x)` will return
a COO\_SparseArray object is when the input object `x` is a sparseMatrix
derivative that uses a compressed _row-oriented_ representation (`"R"`
representation) instead of the more widely used compressed _column-oriented_
representation (`"C"` representation):
```{r}
ngrm <- sparseMatrix(i=c(1, 5, 5, 6), j=c(4, 2, 3, 2), repr="R")
class(ngrm) # ngRMatrix
class(SparseArray(ngrm)) # COO_SparseMatrix
```
One way to enforce the SVT\_SparseArray representation is to coerce the
result to SVT\_SparseArray:
```{r}
svt <- as(SparseArray(ngrm), "SVT_SparseArray")
class(svt) # SVT_SparseMatrix
```
Finally, note that coercing back to ordinary matrix or array (dense
representation) is supported, although obviously not a good idea if
the SparseArray object is big:
```{r}
as.array(svt1) # same as as.matrix(svt1)
as.array(svt2)
```
# The SparseArray API
## The core array API
SVT\_SparseArray objects support the "core array API" defined in base R:
```{r}
dim(svt2)
length(svt2)
dimnames(svt2) <- list(NULL, letters[1:4], LETTERS[1:3])
svt2
```
## type() and is\_sparse()
`type()` and `is_sparse()` are generic functions defined in
`r Biocpkg("BiocGenerics")` and `r Biocpkg("S4Arrays")`, respectively.
They extend the "core array API" defined in base R:
```{r}
type(svt1)
type(svt1) <- "double"
svt1
is_sparse(svt1)
```
See `?SparseArray` for more information and additional examples.
## is\_nonzero() and the nz\*() functions
A set of functions is provided for direct manipulation of the nonzero
array elements:
```{r}
is_nonzero(svt1)
## Get the number of nonzero array elements in 'svt1':
nzcount(svt1)
## Extract the "linear indices" of the nonzero array elements in 'svt1':
nzwhich(svt1)
## Extract the "array indices" (a.k.a. "array coordinates") of the
## nonzero array elements in 'svt1':
nzwhich(svt1, arr.ind=TRUE)
## Extract the values of the nonzero array elements in 'svt1':
nzvals(svt1)
```
Note that the vectors produced by `nzwhich()` and `nzvals()` are _parallel_,
that is, they have the same length and the i-th element in one vector
corresponds to the i-th element in the other vector.
See `?is_nonzero` for more information and additional examples.
## Subsetting and subassignment
```{r}
svt2[5:3, , "C"]
```
Like with ordinary arrays in base R, assigning values of type `"double"` to
an SVT\_SparseArray object of type `"integer"` will automatically change the
type of the object to `"double"`:
```{r}
type(svt2)
svt2[5, 1, 3] <- NaN
type(svt2)
```
See `?SparseArray_subsetting` for more information and additional examples.
## Summarization methods (whole array)
The following summarization methods are provided at the moment: `anyNA()`,
`any`, `all`, `min`, `max`, `range`, `sum`, `prod`, `mean`, `var`, `sd`.
```{r}
anyNA(svt2)
range(svt2, na.rm=TRUE)
mean(svt2, na.rm=TRUE)
var(svt2, na.rm=TRUE)
```
See `?SparseArray_summarization` for more information and additional examples.
## Operations from the Arith, Compare, Logic, Math, Math2, and Complex groups
SVT\_SparseArray objects support operations from the `Arith`, `Compare`,
`Logic`, `Math`, `Math2`, and `Complex` groups, with some restrictions.
See `?S4groupGeneric` in the `r Biocpkg("methods")` package for more
information about these group generics.
```{r}
signif((svt1^1.5 + svt1) %% 100 - 0.6 * svt1, digits=2)
```
See `?SparseArray_Arith`, `?SparseArray_Compare`, `?SparseArray_Logic`,
`?SparseArray_Math`, and `?SparseArray_Complex` for more information
and additional examples.
# The 2D API
## SVT\_SparseMatrix objects
SVT\_SparseMatrix objects are just two-dimensional SVT\_SparseArray objects.
See `?SparseArray` for a diagram of the SparseArray class hierarchy.
## Transposition
```{r}
t(svt1)
```
Note that multidimensional transposition is supported via `aperm()`:
```{r}
aperm(svt2)
```
See `?SparseArray_aperm` for more information and additional examples.
## Combine multidimensional objects along a given dimension
Like ordinary matrices in base R, SVT\_SparseMatrix objects can be
combined by rows or columns, with `rbind()` or `cbind()`:
```{r}
svt4 <- poissonSparseMatrix(6, 2, density=0.5)
cbind(svt1, svt4)
```
Note that multidimensional objects can be combined along any dimension
with `abind()`:
```{r}
svt5a <- poissonSparseArray(c(5, 6, 2), density=0.4)
svt5b <- poissonSparseArray(c(5, 6, 5), density=0.2)
svt5c <- poissonSparseArray(c(5, 6, 4), density=0.2)
abind(svt5a, svt5b, svt5c)
svt6a <- aperm(svt5a, c(1, 3:2))
svt6b <- aperm(svt5b, c(1, 3:2))
svt6c <- aperm(svt5c, c(1, 3:2))
abind(svt6a, svt6b, svt6c, along=2)
```
See `?SparseArray_abind` for more information and additional examples.
## matrixStats methods
The `r Biocpkg("SparseArray")` package provides memory-efficient col/row
summarization methods for SVT\_SparseMatrix objects:
```{r}
svt7 <- SVT_SparseArray(dim=5:6, dimnames=list(letters[1:5], LETTERS[1:6]))
svt7[c(2, 6, 12:17, 22:30)] <- 101:117
colVars(svt7)
```
Note that multidimensional objects are supported:
```{r}
colVars(svt2)
colVars(svt2, dims=2)
colAnyNAs(svt2)
colAnyNAs(svt2, dims=2)
```
See `?SparseArray_matrixStats` for more information and additional examples.
## `rowsum()` and `colsum()`
`rowsum()` and `colsum()` are supported:
```{r}
rowsum(svt7, group=c(1:3, 2:1))
colsum(svt7, group=c("A", "B", "A", "B", "B", "A"))
```
See `?rowsum_methods` for more information and additional examples.
## Matrix multiplication and cross-product
SVT\_SparseMatrix objects support matrix multiplication:
```{r}
svt7 %*% svt4
```
as well as `crossprod()` and `tcrossprod()`:
```{r}
crossprod(svt4)
```
See `?SparseMatrix_mult` for more information and additional examples.
# Other operations
## Generate a random SVT\_SparseArray object
Two convenience functions are provided for this:
```{r}
randomSparseArray(c(5, 6, 2), density=0.5)
poissonSparseArray(c(5, 6, 2), density=0.5)
```
See `?randomSparseArray` for more information and additional examples.
## Read/write a sparse matrix from/to a CSV file
Use `writeSparseCSV()` to write a sparse matrix to a CSV file:
```{r}
csv_file <- tempfile()
writeSparseCSV(svt7, csv_file)
```
Use `readSparseCSV()` to read the file. This will import the data as
an SVT\_SparseMatrix object:
```{r}
readSparseCSV(csv_file)
```
See `?readSparseCSV` for more information and additional examples.
# Comparison with dgCMatrix objects
## "SVT layout" vs "CSC layout"
The nonzero data of a SVT\_SparseArray object is stored in a _Sparse
Vector Tree_. This internal data representation is referred to as
the "SVT layout". It is similar to the "CSC layout" (compressed, sparse,
column-oriented format) used by CsparseMatrix derivatives from
the `r CRANpkg("Matrix")` package, like dgCMatrix or lgCMatrix objects,
but with the following improvements:
- The "SVT layout" supports sparse arrays of arbitrary dimensions.
- With the "SVT layout", the sparse data can be of any type.
Whereas CsparseMatrix derivatives only support sparse data of
type `"double"` or `"logical"`.
- The "SVT layout" imposes no limit on the number of nonzero array
elements that can be stored. With dgCMatrix/lgCMatrix objects, this
number must be < 2^31.
- Overall, the "SVT layout" allows more efficient operations on
SVT\_SparseArray objects.
See `?SVT_SparseArray` for more information about the "SVT layout".
## Working with a big sparse dataset
The "1.3 Million Brain Cell Dataset" from 10x Genomics is a sparse 2D
dataset with more than 2^31 nonzero values. The dataset is stored in an
HDF5 file that is available via ExperimentHub (resource id `EH1039`):
```{r}
suppressMessages(library(HDF5Array))
suppressMessages(library(ExperimentHub))
hub <- ExperimentHub()
oneM <- TENxMatrix(hub[["EH1039"]], group="mm10")
oneM
```
`oneM` is a TENxMatrix object. This is a particular kind of sparse
DelayedArray object where the data is on disk in an HDF5 file.
See `?TENxMatrix` in the `r CRANpkg("HDF5Array")` package for more
information about TENxMatrix objects.
Note that the object has more than 2^31 nonzero values:
```{r}
nzcount(oneM)
```
The standard way to load the data of a TENxMatrix object (or any
DelayedArray derivative) from disk to memory is to simply coerce the
object to the desired in-memory representation.
For example, to load the data in an SVT\_SparseArray object:
```{r, eval=FALSE}
# WARNING: This takes a couple of minutes on a modern laptop, and will
# consume about 25Gb of RAM!
svt <- as(oneM, "SVT_SparseArray")
```
To load the data in a dgCMatrix object:
```{r, eval=FALSE}
# This will fail because 'oneM' has more than 2^31 nonzero values!
as(oneM, "dgCMatrix")
```
# Learn more
Please consult the individual man pages in the `r Biocpkg("SparseArray")`
package to learn more about SVT\_SparseArray objects and about the
package. A good starting point is the man page for SparseArray
objects: `?SparseArray`
# Session information
```{r}
sessionInfo()
```
|