1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198
|
<!-- README.md is generated from README.Rmd. Please edit that file -->
# sparseMatrixStats <a href='https://github.com/const-ae/sparseMatrixStats'><img src='man/figures/logo.png' align="right" height="209" /></a>
<!-- badges: start -->
[](https://codecov.io/gh/const-ae/sparseMatrixStats)
<!-- badges: end -->
The goal of `sparseMatrixStats` is to make the API of
[matrixStats](https://github.com/HenrikBengtsson/matrixStats) available
for sparse matrices.
## Installation
You can install the release version of
*[sparseMatrixStats](https://bioconductor.org/packages/sparseMatrixStats)*
from BioConductor:
``` r
if (!requireNamespace("BiocManager", quietly = TRUE))
install.packages("BiocManager")
BiocManager::install("sparseMatrixStats")
```
Alternatively, you can get the development version of the package from
[GitHub](https://github.com/const-ae/sparseMatrixStats) with:
``` r
# install.packages("devtools")
devtools::install_github("const-ae/sparseMatrixStats")
```
## Example
``` r
library(sparseMatrixStats)
```
``` r
mat <- matrix(0, nrow=10, ncol=6)
mat[sample(seq_len(60), 4)] <- 1:4
# Convert dense matrix to sparse matrix
sparse_mat <- as(mat, "dgCMatrix")
sparse_mat
#> 10 x 6 sparse Matrix of class "dgCMatrix"
#>
#> [1,] 4 . . . . .
#> [2,] . . . . . .
#> [3,] . . . . . .
#> [4,] 2 . . . . .
#> [5,] . . . . . .
#> [6,] . . . . . .
#> [7,] . . . . . 1
#> [8,] . . . . . .
#> [9,] . . . 3 . .
#> [10,] . . . . . .
```
The package provides an interface to quickly do common operations on the
rows or columns. For example calculate the variance:
``` r
apply(mat, 2, var)
#> [1] 1.822222 0.000000 0.000000 0.900000 0.000000 0.100000
matrixStats::colVars(mat)
#> [1] 1.822222 0.000000 0.000000 0.900000 0.000000 0.100000
sparseMatrixStats::colVars(sparse_mat)
#> [1] 1.822222 0.000000 0.000000 0.900000 0.000000 0.100000
```
On this small example data, all methods are basically equally fast, but
if we have a much larger dataset, the optimizations for the sparse data
start to show.
I generate a dataset with 10,000 rows and 50 columns that is 99% empty
``` r
big_mat <- matrix(0, nrow=1e4, ncol=50)
big_mat[sample(seq_len(1e4 * 50), 5000)] <- rnorm(5000)
# Convert dense matrix to sparse matrix
big_sparse_mat <- as(big_mat, "dgCMatrix")
```
I use the `bench` package to benchmark the performance difference:
``` r
bench::mark(
sparseMatrixStats=sparseMatrixStats::colVars(big_sparse_mat),
matrixStats=matrixStats::colVars(big_mat),
apply=apply(big_mat, 2, var)
)
#> # A tibble: 3 x 6
#> expression min median `itr/sec` mem_alloc `gc/sec`
#> <bch:expr> <bch:tm> <bch:tm> <dbl> <bch:byt> <dbl>
#> 1 sparseMatrixStats 36.15µs 40.09µs 24419. 2.93KB 14.7
#> 2 matrixStats 1.42ms 1.45ms 677. 156.8KB 2.03
#> 3 apply 8.89ms 10.56ms 94.6 9.54MB 53.0
```
As you can see `sparseMatrixStats` is ca. 35 times fast than
`matrixStats`, which in turn is 7 times faster than the `apply()`
version.
# API
The package now supports all functions from the `matrixStats` API for
column sparse matrices (`dgCMatrix`). And thanks to the
[`MatrixGenerics`](https://bioconductor.org/packages/MatrixGenerics/) it
can be easily integrated along-side
[`matrixStats`](https://cran.r-project.org/package=matrixStats) and
[`DelayedMatrixStats`](https://bioconductor.org/packages/DelayedMatrixStats/).
Note that the `rowXXX()` functions are called by transposing the input
and calling the corresponding `colXXX()` function. Special optimized
implementations are available for `rowSums2()`, `rowMeans2()`, and
`rowVars()`.
| Method | matrixStats | sparseMatrixStats | Notes |
| :------------------- | :---------- | :---------------- | :--------------------------------------------------------------------------------------- |
| colAlls() | ✔ | ✔ | |
| colAnyMissings() | ✔ | ❌ | Not implemented because it is deprecated in favor of `colAnyNAs()` |
| colAnyNAs() | ✔ | ✔ | |
| colAnys() | ✔ | ✔ | |
| colAvgsPerRowSet() | ✔ | ✔ | |
| colCollapse() | ✔ | ✔ | |
| colCounts() | ✔ | ✔ | |
| colCummaxs() | ✔ | ✔ | |
| colCummins() | ✔ | ✔ | |
| colCumprods() | ✔ | ✔ | |
| colCumsums() | ✔ | ✔ | |
| colDiffs() | ✔ | ✔ | |
| colIQRDiffs() | ✔ | ✔ | |
| colIQRs() | ✔ | ✔ | |
| colLogSumExps() | ✔ | ✔ | |
| colMadDiffs() | ✔ | ✔ | |
| colMads() | ✔ | ✔ | |
| colMaxs() | ✔ | ✔ | |
| colMeans2() | ✔ | ✔ | |
| colMedians() | ✔ | ✔ | |
| colMins() | ✔ | ✔ | |
| colOrderStats() | ✔ | ✔ | |
| colProds() | ✔ | ✔ | |
| colQuantiles() | ✔ | ✔ | |
| colRanges() | ✔ | ✔ | |
| colRanks() | ✔ | ✔ | |
| colSdDiffs() | ✔ | ✔ | |
| colSds() | ✔ | ✔ | |
| colsum() | ✔ | ❌ | Base R function |
| colSums2() | ✔ | ✔ | |
| colTabulates() | ✔ | ✔ | |
| colVarDiffs() | ✔ | ✔ | |
| colVars() | ✔ | ✔ | |
| colWeightedMads() | ✔ | ✔ | Sparse version behaves slightly differently, because it always uses `interpolate=FALSE`. |
| colWeightedMeans() | ✔ | ✔ | |
| colWeightedMedians() | ✔ | ✔ | Only equivalent if `interpolate=FALSE` |
| colWeightedSds() | ✔ | ✔ | |
| colWeightedVars() | ✔ | ✔ | |
| rowAlls() | ✔ | ✔ | |
| rowAnyMissings() | ✔ | ❌ | Not implemented because it is deprecated in favor of `rowAnyNAs()` |
| rowAnyNAs() | ✔ | ✔ | |
| rowAnys() | ✔ | ✔ | |
| rowAvgsPerColSet() | ✔ | ✔ | |
| rowCollapse() | ✔ | ✔ | |
| rowCounts() | ✔ | ✔ | |
| rowCummaxs() | ✔ | ✔ | |
| rowCummins() | ✔ | ✔ | |
| rowCumprods() | ✔ | ✔ | |
| rowCumsums() | ✔ | ✔ | |
| rowDiffs() | ✔ | ✔ | |
| rowIQRDiffs() | ✔ | ✔ | |
| rowIQRs() | ✔ | ✔ | |
| rowLogSumExps() | ✔ | ✔ | |
| rowMadDiffs() | ✔ | ✔ | |
| rowMads() | ✔ | ✔ | |
| rowMaxs() | ✔ | ✔ | |
| rowMeans2() | ✔ | ✔ | |
| rowMedians() | ✔ | ✔ | |
| rowMins() | ✔ | ✔ | |
| rowOrderStats() | ✔ | ✔ | |
| rowProds() | ✔ | ✔ | |
| rowQuantiles() | ✔ | ✔ | |
| rowRanges() | ✔ | ✔ | |
| rowRanks() | ✔ | ✔ | |
| rowSdDiffs() | ✔ | ✔ | |
| rowSds() | ✔ | ✔ | |
| rowsum() | ✔ | ❌ | Base R function |
| rowSums2() | ✔ | ✔ | |
| rowTabulates() | ✔ | ✔ | |
| rowVarDiffs() | ✔ | ✔ | |
| rowVars() | ✔ | ✔ | |
| rowWeightedMads() | ✔ | ✔ | Sparse version behaves slightly differently, because it always uses `interpolate=FALSE`. |
| rowWeightedMeans() | ✔ | ✔ | |
| rowWeightedMedians() | ✔ | ✔ | Only equivalent if `interpolate=FALSE` |
| rowWeightedSds() | ✔ | ✔ | |
| rowWeightedVars() | ✔ | ✔ | |
|