File: SpatialExperiment.Rmd

package info (click to toggle)
r-bioc-spatialexperiment 1.16.0%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,648 kB
  • sloc: makefile: 2
file content (608 lines) | stat: -rw-r--r-- 17,876 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
---
title: "Introduction to the SpatialExperiment class"
author: "Dario Righelli, Helena L. Crowell, Lukas M. Weber"
date: "`r format(Sys.Date(), '%b %d, %Y')`"
output:
    BiocStyle::html_document:
        toc: true
        number_sections: true
        toc_depth: 3
        toc_float:
            collapsed: true
vignette: >
    %\VignetteIndexEntry{Introduction to the SpatialExperiment class}
    %\VignetteEncoding{UTF-8}
    %\VignetteEngine{knitr::rmarkdown}
editor_options: 
    chunk_output_type: inline
---

<style type="text/css"> .smaller { font-size: 10px } </style>

```{r setup, include = FALSE}
knitr::opts_chunk$set(cache = TRUE, autodep = TRUE, cache.lazy = FALSE)
```


# Class structure

## Introduction

The `SpatialExperiment` class is an R/Bioconductor S4 class for storing 
data from spatial -omics experiments. The class 
extends the `SingleCellExperiment` class for single-cell data to support 
storage and retrieval of additional information from spot-based and 
molecule-based platforms, including spatial coordinates, images, and 
image metadata. A specialized constructor function is included for data 
from the 10x Genomics Visium platform.

The following schematic illustrates the `SpatialExperiment` class 
structure.

```{r, echo=FALSE, out.width = "100%", fig.cap="Overview of the SpatialExperiment class structure."}
knitr::include_graphics("SPE.png")
```

As shown, an object consists of: (i) `assays` containing expression counts, 
(ii) `rowData` containing information on features, i.e. genes, (iii) 
`colData` containing information on spots or cells, including nonspatial 
and spatial metadata, (iv) `spatialCoords` containing spatial coordinates, 
and (v) `imgData` containing image data. For spot-based ST data (e.g. 10x 
Genomics Visium), a single `assay` named `counts` is used. For molecule-based 
ST data (e.g. seqFISH), two `assays` named `counts` and `molecules` can be used.

Additional details on the class structure are provided in our 
[preprint](https://www.biorxiv.org/content/10.1101/2021.01.27.428431v3).


## Load data

For demonstration of the general class structure, we load an example 
`SpatialExperiment` (abbreviated as SPE) object (variable `spe`):

```{r message = FALSE}
library(SpatialExperiment)
example(read10xVisium, echo = FALSE)
spe
```


## `spatialCoords`

In addition to observation metadata stored inside the `colData` slot, 
the `SpatialExperiment` class stores spatial coordinates as:

- `spatialCoords`, a numeric matrix of spatial coordinates (e.g. `x` and `y`)

`spatialCoords` are stored inside the `int_colData`, and are directly 
accessible via the corresponding accessor:

```{r}
head(spatialCoords(spe))
```

The corresponding column names can be also accessed with `spatialCoordsNames()`:

```{r}
spatialCoordsNames(spe)
```


## `imgData`

All image related data are stored inside the `int_metadata`'s 
`imgData` field as a `DataFrame` of the following structure: 

* each row corresponds to one image for a given sample  
and with a given unique image identifier (e.g. its resolutions)
* for each image, columns specify:
  * which `sample_id` the image belongs to
  * a unique `image_id` in order to accommodate multiple images  
  for a given sample (e.g. of different resolutions)
  * the image's `data` (a `SpatialImage` object)
  * the `scaleFactor` that adjusts pixel positions of the original,  
  full-resolution image to pixel positions in the image

The `imgData()` accessor can be used to retrieve 
the image data stored within the object:

```{r}
imgData(spe)
```


### The `SpatialImage` class

Images are stored inside the `data` field of the `imgData` as a list of 
`SpatialImage`s. Each image may be of one of the following sub-classes:

* `LoadedSpatialImage`
  * represents an image that is fully realized into memory as a `raster` object
  * `@image` contains a `raster` object: a matrix 
  of RGB colors for each pixel in the image
* `StoredSpatialImage`
  * represents an image that is stored in a local file (e.g., as  
  .png, .jpg or .tif), and loaded into memory only on request
  * `@path` specifies a local file from which to retrieve the image
* `RemoteSpatialImage`
  * represents an image that is remotely hosted  
  (under some URL), and retrieved only on request
  * `@url` specifies where to retrieve the image from

A `SpatialImage` can be accessed using `getImg()`, 
or retrieved directly from the `imgData()`:

```{r}
(spi <- getImg(spe))
identical(spi, imgData(spe)$data[[1]])
```

Data available in an object of class `SpatialImage` may be 
accessed via the `imgRaster()` and `imgSource()` accessors:

```{r fig.small = TRUE}
plot(imgRaster(spe))
```


### Adding or removing images

Image entries may be added or removed from a `SpatialExperiment`'s 
`imgData` `DataFrame` using `addImg()` and `rmvImg()`, respectively.

Besides a path or URL to source the image from and a numeric scale factor, 
`addImg()` requires specification of the `sample_id` the new image belongs to, 
and an `image_id` that is not yet in use for that sample:

```{r fig.small = TRUE, eval = TRUE}
url <- "https://i.redd.it/3pw5uah7xo041.jpg"
spe <- addImg(spe, 
    sample_id = "section1", 
    image_id = "pomeranian",
    imageSource = url, 
    scaleFactor = NA_real_, 
    load = TRUE)
img <- imgRaster(spe, 
    sample_id = "section1", 
    image_id = "pomeranian")
plot(img)
```

The `rmvImg()` function is more flexible in the specification 
of the `sample_id` and `image_id` arguments. Specifically:

- `TRUE` is equivalent to *all*, e.g.  
`sample_id = "<sample>"`, `image_id = TRUE`  
will drop all images for a given sample
- `NULL` defaults to the first entry available, e.g.  
`sample_id = "<sample>"`, `image_id = NULL`  
will drop the first image for a given sample

For example, `sample_id = TRUE`, `image_id = TRUE` will specify all images; 
`sample_id = NULL`, `image_id = NULL` corresponds to the first image entry in the `imgData`; 
`sample_id = TRUE`, `image_id = NULL` equals the first image for all samples; and 
`sample_id = NULL`, `image_id = TRUE` matches all images for the first sample.

Here, we remove `section1`'s `pomeranian` image added in the previous 
code chunk; the image is now completely gone from the `imgData`:

```{r}
imgData(spe <- rmvImg(spe, "section1", "pomeranian"))
```


# Object construction

## Manually

The `SpatialExperiment` constructor provides several arguments 
to give maximum flexibility to the user.

In particular, these include: 

- `spatialCoords`, a numeric `matrix` containing spatial coordinates
- `spatialCoordsNames`, a character vector specifying which  
`colData` fields correspond to spatial coordinates

`spatialCoords` can be supplied via `colData`
by specifying the column names that correspond to spatial coordinates 
with `spatialCoordsNames`:

```{r}
n <- length(z <- letters)
y <- matrix(nrow = n, ncol = n)
cd <- DataFrame(x = seq(n), y = seq(n), z)

spe1 <- SpatialExperiment(
    assay = y, 
    colData = cd, 
    spatialCoordsNames = c("x", "y"))
```

Alternatively, `spatialCoords` may be supplied separately
as a `matrix`, e.g.:

```{r}
xy <- as.matrix(cd[, c("x", "y")])

spe2 <- SpatialExperiment(
    assay = y, 
    colData = cd["z"], 
    spatialCoords = xy)
```

Importantly, both of the above `SpatialExperiment()` function calls 
lead to construction of the exact same object:

```{r}
identical(spe1, spe2)
```

Finally, `spatialCoords(Names)` are optional, i.e., 
we can construct a SPE using only a subset of the above arguments:

```{r}
spe <- SpatialExperiment(
    assays = y)
isEmpty(spatialCoords(spe))
```

In general, `spatialCoordsNames` takes precedence over `spatialCoords`,
i.e., if both are supplied, the latter will be ignored. In other words,
`spatialCoords` are preferentially extracted from the `DataFrame`
provided via `colData`. E.g., in the following function call, 
`spatialCoords` will be ignored, and xy-coordinates are instead extracted
from the input `colData` according to the specified `spatialCoordsNames`. 
In this case, a message is also provided:

```{r results = "hide"}
n <- 10; m <- 20
y <- matrix(nrow = n, ncol = m)
cd <- DataFrame(x = seq(m), y = seq(m))
xy <- matrix(nrow = m, ncol = 2)
colnames(xy) <- c("x", "y")

SpatialExperiment(
    assay = y, 
    colData = cd,
    spatialCoordsNames = c("x", "y"),
    spatialCoords = xy)
```


## Spot-based

When working with spot-based ST data, such as *10x Genomics Visium* or other 
platforms providing images, it is possible to store the image information 
in the dedicated `imgData` structure.

Also, the `SpatialExperiment` class stores a `sample_id` value in the
`colData` structure, which is possible to set with the `sample_id` 
argument (default is "sample_01").

Here we show how to load the default *Space Ranger* data files from a 
10x Genomics Visium experiment, and build a `SpatialExperiment` object.

In particular, the `readImgData()` function is used to build an `imgData`
`DataFrame` to be passed to the `SpatialExperiment` constructor.
The `sample_id` used to build the `imgData` object must be the same one 
used to build the `SpatialExperiment` object, otherwise an error is returned.

```{r}
dir <- system.file(
   file.path("extdata", "10xVisium", "section1", "outs"),
   package = "SpatialExperiment")

# read in counts
fnm <- file.path(dir, "raw_feature_bc_matrix")
sce <- DropletUtils::read10xCounts(fnm)

# read in image data
img <- readImgData(
    path = file.path(dir, "spatial"),
    sample_id = "foo")

# read in spatial coordinates
fnm <- file.path(dir, "spatial", "tissue_positions_list.csv")
xyz <- read.csv(fnm, header = FALSE,
    col.names = c(
        "barcode", "in_tissue", "array_row", "array_col",
        "pxl_row_in_fullres", "pxl_col_in_fullres"))

# construct observation & feature metadata
rd <- S4Vectors::DataFrame(
    symbol = rowData(sce)$Symbol)

# construct 'SpatialExperiment'
(spe <- SpatialExperiment(
    assays = list(counts = assay(sce)),
    rowData = rd, 
    colData = DataFrame(xyz), 
    spatialCoordsNames = c("pxl_col_in_fullres", "pxl_row_in_fullres"),
    imgData = img,
    sample_id = "foo"))
```

Alternatively, the `read10xVisium()` function facilitates the import of 
*10x Genomics Visium* data to handle one or more samples organized in
folders reflecting the default *Space Ranger* folder tree organization, 
as illustrated below (where "raw/filtered" refers to either "raw" or 
"filtered" to match the `data` argument). Note that the base directory 
"outs/" from Space Ranger can either be included manually in the paths 
provided in the `samples` argument, or can be ignored; if ignored, it will 
be added automatically. The `.h5` files are used if `type = "HDF5"`. (Note 
that `tissue_positions.csv` was renamed in Space Ranger v2.0.0.)

```{bash, eval = FALSE}
sample
 . | — outs
 · · | — raw/filtered_feature_bc_matrix.h5
 · · | — raw/filtered_feature_bc_matrix
 · · · | — barcodes.tsv.gz
 · · · | — features.tsv.gz
 · · · | — matrix.mtx.gz
 · · | — spatial
 · · · | — scalefactors_json.json
 · · · | — tissue_lowres_image.png
 · · · | — tissue_positions.csv
```

Using `read10xVisium()`, the above code to construct the same SPE is reduced to:

```{r}
dir <- system.file(
    file.path("extdata", "10xVisium"),
    package = "SpatialExperiment")

sample_ids <- c("section1", "section2")
samples <- file.path(dir, sample_ids, "outs")

(spe10x <- read10xVisium(samples, sample_ids,
    type = "sparse", data = "raw",
    images = "lowres", load = FALSE))
```

Or alternatively, omitting the base directory `outs/` from Space Ranger:

```{r}
samples2 <- file.path(dir, sample_ids)

(spe10x2 <- read10xVisium(samples2, sample_ids,
    type = "sparse", data = "raw",
    images = "lowres", load = FALSE))
```


## Molecule-based

To demonstrate how to accommodate molecule-based ST data 
(e.g. *seqFISH* platform) inside a `SpatialExperiment` object, 
we generate some mock data of 1000 molecule coordinates across 
50 genes and 20 cells. These should be formatted into a `data.frame` 
where each row corresponds to a molecule, and columns specify the 
xy-positions as well as which gene/cell the molecule has been assigned to: 

```{r message = FALSE, warning = FALSE}
n <- 1e3  # number of molecules
ng <- 50  # number of genes
nc <- 20  # number of cells
# sample xy-coordinates in [0, 1]
x <- runif(n)
y <- runif(n)
# assign each molecule to some gene-cell pair
gs <- paste0("gene", seq(ng))
cs <- paste0("cell", seq(nc))
gene <- sample(gs, n, TRUE)
cell <- sample(cs, n, TRUE)
# assure gene & cell are factors so that
# missing observations aren't dropped
gene <- factor(gene, gs)
cell <- factor(cell, cs)
# construct data.frame of molecule coordinates
df <- data.frame(gene, cell, x, y)
head(df)
```

Next, it is possible to re-shape the above table into a 
`r BiocStyle::Biocpkg("BumpyMatrix")` using `splitAsBumpyMatrix()`, which takes 
as input the xy-coordinates, as well as arguments specifying the row and column 
index of each observation:

```{r message = FALSE, warning = FALSE}
# construct 'BumpyMatrix'
library(BumpyMatrix)
mol <- splitAsBumpyMatrix(
    df[, c("x", "y")], 
    row = gene, col = cell)
```

Finally, it is possible to construct a `SpatialExperiment` object with two data 
slots: 

- The `counts` assay stores the number of molecules per gene and cell  
(equivalent to transcript counts in spot-based data)
- The `molecules` assay holds the spatial molecule positions (xy-coordinates)

Each entry in the `molecules` assay is a `DFrame` that contains the positions 
of all molecules from a given gene that have been assigned to a given cell. 

```{r message = FALSE, warning = FALSE}
# get count matrix
y <- with(df, table(gene, cell))
y <- as.matrix(unclass(y))
y[1:5, 1:5]
# construct SpatialExperiment
spe <- SpatialExperiment(
    assays = list(
        counts = y, 
        molecules = mol))
spe
```

The `BumpyMatrix` of molecule locations can be accessed 
using the dedicated `molecules()` accessor:

```{r message = FALSE, warning = FALSE}
molecules(spe)
```


# Common operations

## Subsetting

Subsetting objects is automatically defined to synchronize across 
all attributes, as for any other Bioconductor *Experiment* class.

For example, it is possible to `subset` by `sample_id` as follows:

```{r}
sub <- spe10x[, spe10x$sample_id == "section1"]
```

Or to retain only observations that map to tissue via:

```{r}
sub <- spe10x[, colData(spe10x)$in_tissue]
sum(colData(spe10x)$in_tissue) == ncol(sub)
```


## Combining samples

To work with multiple samples, the `SpatialExperiment` class provides the `cbind`
method, which assumes unique `sample_id`(s) are provided for each sample.

In case the `sample_id`(s) are duplicated across multiple samples, the `cbind`
method takes care of this by appending indices to create unique sample identifiers.

```{r}
spe1 <- spe2 <- spe
spe3 <- cbind(spe1, spe2)
unique(spe3$sample_id)
```

Alternatively (and preferentially), we can create unique 
`sample_id`(s) prior to `cbind`ing as follows:

```{r}
# make sample identifiers unique
spe1 <- spe2 <- spe
spe1$sample_id <- paste(spe1$sample_id, "A", sep = ".")
spe2$sample_id <- paste(spe2$sample_id, "B", sep = ".")

# combine into single object
spe3 <- cbind(spe1, spe2)
```


## Sample ID replacement

In particular, when trying to replace the `sample_id`(s) of a `SpatialExperiment`
object, these must map uniquely with the already existing ones, otherwise an 
error is returned.

```{r, error=TRUE}
new <- spe3$sample_id
new[1] <- "section2.A"
spe3$sample_id <- new
new[1] <- "third.one.of.two"
spe3$sample_id <- new
```

Importantly, the `sample_id` `colData` field is *protected*, i.e., 
it will be retained upon attempted removal (= replacement by `NULL`):

```{r}
# backup original sample IDs
tmp <- spe$sample_id
# try to remove sample IDs
spe$sample_id <- NULL
# sample IDs remain unchanged
identical(tmp, spe$sample_id)
```


## Image transformations

Both the `SpatialImage` (SpI) and `SpatialExperiment` (SpE) class currently support 
two basic image transformations, namely, rotation (via `rotateImg()`) and 
mirroring (via `mirrorImg()`). Specifically, for a SpI/E `x`:

* `rotateImg(x, degrees)` expects as `degrees` a single numeric in +/-[0,90,...,360].  
Here, a (negative) positive value corresponds to (counter-)clockwise rotation.
* `mirrorImg(x, axis)` expects as `axis` a character string specifying  
whether to mirror horizontally (`"h"`) or vertically (`"v"`).

Here, we apply various transformations using both a SpI (`spi`) and SpE (`spe`)
as input, and compare the resulting images to the original:


### Rotation

```{r}
# extract first image
spi <- getImg(spe10x)
# apply counter-/clockwise rotation
spi1 <- rotateImg(spi, -90)
spi2 <- rotateImg(spi, +90)
# visual comparison
par(mfrow = c(1, 3))
plot(as.raster(spi))
plot(as.raster(spi1))
plot(as.raster(spi2))
```

```{r}
# specify sample & image identifier
sid <- "section1"
iid <- "lowres"
# counter-clockwise rotation
tmp <- rotateImg(spe10x, 
    sample_id = sid, 
    image_id = iid,
    degrees = -90)
# visual comparison
par(mfrow = c(1, 2))
plot(imgRaster(spe10x, sid, iid))
plot(imgRaster(tmp, sid, iid))
```


### Mirroring

```{r}
# extract first image
spi <- getImg(spe10x)
# mirror horizontally/vertically
spi1 <- mirrorImg(spi, "h")
spi2 <- mirrorImg(spi, "v")
# visual comparison
par(mfrow = c(1, 3))
plot(as.raster(spi))
plot(as.raster(spi1))
plot(as.raster(spi2))
```

```{r}
# specify sample & image identifier
sid <- "section2"
iid <- "lowres"
# mirror horizontally
tmp <- mirrorImg(spe10x, 
    sample_id = sid, 
    image_id = iid,
    axis = "h")
# visual comparison
par(mfrow = c(1, 2))
plot(imgRaster(spe10x, sid, iid))
plot(imgRaster(tmp, sid, iid))
```


# Session Info {.smaller}

```{r tidy = TRUE}
sessionInfo()
```