1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259
|
#' Detecting nuclear mitochondria fusion events.
#'
#' @details
#' Nuclear mitochondrial fusion (NUMT) is a common event found in human genomes.
#' This function searches for NUMT events by identifying breakpoints supporting the fusion of
#' nuclear chromosome and mitochondrial genome. Only BND notations are supported at the current stage.
#' Possible linked nuclear insertion sites are reported using SV IDs in the candidatePartnerId metadata column.
#' @param gr A GRanges object
#' @param nonStandardChromosomes Whether to report insertion sites on non-standard reference
#' chromosomes. Default value is set to FALSE.
#' @param max_ins_dist The maxium distance allowed on the reference genome between the paired insertion sites.
#' Only intra-chromosomal NUMT events are supported. Default value is 1000.
#' @return A GRanges object of possible NUMT loci.
#' @examples
#' vcf.file <- system.file("extdata", "MT.vcf", package = "StructuralVariantAnnotation")
#' vcf <- VariantAnnotation::readVcf(vcf.file, "hg19")
#' gr <- breakpointRanges(vcf, nominalPosition=TRUE)
#' numt.gr <- numtDetect(gr)
#' @export
numtDetect <- function(gr, nonStandardChromosomes=FALSE, max_ins_dist=1000){
.Deprecated(new="numtDetect", package="numtDetect", msg="numtDetect is moving into it's own svaNumt package in BioConductor 3.14")
assertthat::assert_that(class(gr)=="GRanges", msg = "gr should be a GRanges object")
assertthat::assert_that(length(gr)>0, msg = "gr can't be empty")
if (nonStandardChromosomes==FALSE) {
gr <- GenomeInfoDb::keepStandardChromosomes(gr, pruning.mode = "coarse", species = "Homo_sapiens")
}
numt.gr <- gr[!(seqnames(gr)=="chrM"|seqnames(gr)=="MT")]
numt.gr <- numt.gr[stringr::str_match(numt.gr$ALT, "(.*)(\\[|])(.*)(:)(.+)(\\[|])(.*)")[,4] %in% c("MT", "chrM")]
candidatePartnerId.list <- vector(mode="list", length=length(numt.gr))
names(candidatePartnerId.list) <- names(numt.gr)
if (length(numt.gr)>0) {
for (i in 1:length(numt.gr)) {
seq = seqnames(numt.gr[i])
pos = start(numt.gr[i])
std = strand(numt.gr[i])
name = names(numt.gr[i])
#candidatePartner.gr = numt.gr[seqnames(numt.gr)==seq & abs(start(numt.gr)-pos)< max_ins_dist & strand(numt.gr)!=std]
candidatePartnerIds = names(numt.gr[seqnames(numt.gr)==seq & abs(start(numt.gr)-pos)< max_ins_dist & strand(numt.gr)!=std])
candidatePartnerId.list[[name]] = ifelse(length(candidatePartnerIds)>0, candidatePartnerIds, NA)
# if (length(candidatePartner.gr)>0) {
# candidatePartnerId = IRanges::CharacterList(names(candidatePartner.gr))
# #candidatePartnerId = paste(candidatePartner.gr$sourceId, collapse = ",")
# #print(candidatePartnerId)
# numt.gr$candidatePartnerId[i] = candidatePartnerId
# } else {
# #numt.gr$candidatePartnerId[i] = N
# candidatePartnerId.list[[]]
# }
}
#candidatePartnerId.list <- IRanges::CharacterList(candidatePartnerId.list)
numt.gr <- c(numt.gr, gr[names(partner(gr)) %in% names(numt.gr)])
numt.gr$candidatePartnerId <- rep(IRanges::CharacterList(NA), length(numt.gr))
for (name in names(candidatePartnerId.list)) {
numt.gr[name]$candidatePartnerId <- candidatePartnerId.list[[name]]
numt.gr[names(partner(numt.gr))==name]$candidatePartnerId = candidatePartnerId.list[[name]]
}
return(numt.gr)
}else{
message("There is no NUMT event detected. Check whether 'chrM' or 'MT' is present in the VCF.")
}
#TODO: @param min_mt_len The minimum inserted mitochonrial genome length accepted. Default value is 30.
}
#' Calculating MT sequence length.
#'
#' @details
#' This function calculate the length of MT sequence length with BND notations.
#' @param bnd.start starting breakend of the MT sequence.
#' @param bnd.end ending breakend of the MT sequence.
#' @param chrM.len length of the reference MT genome.
#' @return The length of the MT sequence. When the candidate MT BNDs can't be linked as one sequence, the returned value is NA.
#' @noRd
.mtLen <- function(bnd.start, bnd.end, chrM.len){
bnd.start.str <- stringr::str_match(bnd.start, "(.*)(\\[|])(.*)(:)(.+)(\\[|])(.*)")
bnd.end.str <- stringr::str_match(bnd.end, "(.*)(\\[|])(.*)(:)(.+)(\\[|])(.*)")
assertthat::assert_that(bnd.start.str[3] %in% c("[","]"))
assertthat::assert_that(bnd.end.str[3] %in% c("[","]"))
assertthat::assert_that(is.numeric(bnd.start.str[6]))
assertthat::assert_that(is.numeric(bnd.end.str[6]))
if (bnd.start.str[3]=="[" & bnd.end.str[3]=="]") {
if (bnd.start.str[6]<bnd.end.str[6]) {
dist=bnd.end.str[6]-bnd.start.str[6]
}else if (bnd.start.str[6]>=bnd.end.str[6]) {
dist=bnd.end.str[6]-bnd.start.str[6]+chrM.len
}
}else if (bnd.start.str[3]=="]" & bnd.end.str[3]=="[") {
if (bnd.start.str[6]<bnd.end.str[6]) {
dist=chrM.len-bnd.end.str[6]+bnd.start.str[6]
}else if (bnd.start.str[6]>=bnd.end.str[6]) {
dist=bnd.start.str[6]-bnd.end.str[6]
}
}else {
dist=NA
}
return(dist)
}
#' Detecting retrotranscript insertion in nuclear genomes.
#'
#' @details
#' This function searches for retroposed transcripts by identifying breakpoints supporting
#' intronic deletions and fusions between exons and remote loci.
#' Only BND notations are supported at the current stage.
#' @param gr A GRanges object
#' @param genes TxDb object of genes. hg19 and hg38 are supported in the current version.
#' @param maxgap The maxium distance allowed on the reference genome between the paired exon boundries.
#' @param minscore The minimum proportion of intronic deletions of a transcript should be identified.
#' @return A GRangesList object, named insSite and rt, reporting breakpoints supporting insert sites and
#' retroposed transcripts respectively. 'exon' and 'txs' in the metadata columns report exon_id and transcript_name from the 'genes' object.
#' @export
rtDetect <- function(gr, genes, maxgap=100, minscore=0.3){
.Deprecated(new="rtDetect", package="rtDetect", msg="rtDetect is moving into it's own svaRetro package in BioConductor 3.14")
#message("rtDetect")
#check args
assertthat::assert_that(class(gr)=="GRanges", msg = "gr should be a GRanges object")
assertthat::assert_that(length(gr)>0, msg = "gr can't be empty")
assertthat::assert_that(class(genes)=="TxDb", msg = "genes should be a TxDb object")
#prepare annotation exons
GenomeInfoDb::seqlevelsStyle(genes) <- GenomeInfoDb::seqlevelsStyle(gr)[1]
genes <- GenomeInfoDb::keepSeqlevels(genes, seqlevels(genes)[1:24], pruning.mode = "coarse")
exons <- exons(genes, columns=c("exon_id", "tx_id", "tx_name","gene_id"))
#------------------------
#testing only
#gr <- breakpointRanges(manta)
#------------------------
#find exon-SV overlaps:
hits.start <- findOverlaps(gr, exons, maxgap = maxgap, type = "start", ignore.strand = TRUE)
hits.end <- findOverlaps(partner(gr), exons, maxgap = maxgap, type = "end", ignore.strand = TRUE)
# 1.return breakpoints overlapping with exons on both ends (>=2 exons)
hits <- dplyr::inner_join(dplyr::as_tibble(hits.start), dplyr::as_tibble(hits.end), by="queryHits")
#mcols(exons)[hits$subjectHits.x, "gene_id"] == mcols(exons)[hits$subjectHits.y, "gene_id"]
same.tx <- sapply(Reduce(intersect, list(mcols(exons)[hits$subjectHits.x, 'tx_id'],
mcols(exons)[hits$subjectHits.y, 'tx_id'])),length)!=0
hits.tx <- hits[same.tx,]
# 2.return breakpoints of insertionSite-exon
hits.insSite <- hits[!same.tx,] %>%
dplyr::bind_rows(.data, dplyr::anti_join(dplyr::as_tibble(hits.start), dplyr::as_tibble(hits.end), by='queryHits')) %>%
dplyr::bind_rows(.data, dplyr::anti_join(dplyr::as_tibble(hits.end), dplyr::as_tibble(hits.start), by='queryHits'))
# hits.insSite <- rbind(hits[!same.tx,],
# anti_join(dplyr::as_tibble(hits.start), dplyr::as_tibble(hits.end), by='queryHits'),
# anti_join(dplyr::as_tibble(hits.end), dplyr::as_tibble(hits.start), by='queryHits'))
if (nrow(hits.tx)+nrow(hits.insSite)==0) {
message("There is no retroposed gene detected.")
return(GRanges())
}else{
# 3.filter exon-exon junctions by minscore(>=2 exons)
txs <- mapply(intersect, exons[hits.tx$subjectHits.x]$tx_name, exons[hits.tx$subjectHits.y]$tx_name)
rt.gr<- c(gr[hits.tx$queryHits], partner(gr)[hits.tx$queryHits])
rt.gr$exon <- c(exons[hits.tx$subjectHits.x]$exon_id, exons[hits.tx$subjectHits.y]$exon_id)
rt.gr$txs <- c(IRanges::CharacterList(txs), IRanges::CharacterList(txs))
rt.gr <- rt.gr[!sapply(rt.gr$txs, rlang::is_empty)]
#message("annotate overlapping exons")
#combine matching exons and transcripts of the same breakend
names <- unique(names(rt.gr))
rt.txs <- sapply(names, function(x) {Reduce(union, rt.gr[names(rt.gr)==x]$txs)})
rt.exons <- sapply(names, function(x) {Reduce(union, rt.gr[names(rt.gr)==x]$exon)})
rt.gr$txs <- rt.txs[names(rt.gr)]
rt.gr$exons <- rt.exons[names(rt.gr)]
#remove duplicate breakend records
rt.gr <- rt.gr[!duplicated(names(rt.gr))]
#unique() and duplicated() for granges compare RANGES, not names
# rt.gr <- rt.gr[rt.gr$exons != partner(rt.gr)$exons]
rt.gr
#RT filter 1: breakpoint should have at least one set of matching exon
rt.gr <- rt.gr[!mapply(identical, partner(rt.gr)$exons, rt.gr$exons) |
(mapply(identical, partner(rt.gr)$exons, rt.gr$exons) & sapply(rt.gr$exons, length)>1)]
#RT filter 2:minimal proportion of exon-exon detected for a transcript
tx.rank <- .scoreByTranscripts(genes, unlist(rt.gr$txs))
#dataframe of valid retro transcripts
tx.rank <- tx.rank[tx.rank$score >= minscore,]
#remove rows and transcripts which are not in the tx.rank
rt.gr <- rt.gr[stringr::str_detect(unstrsplit(rt.gr$txs), paste(tx.rank$tx_name, collapse = "|"))]
rt.gr$txs <- mapply('[', rt.gr$txs, mapply(stringr::str_detect, rt.gr$txs, paste(tx.rank$tx_name, collapse = "|")))
#select insertion site by minscore (tx.rank)
# hits.start.idx <- stringr::str_detect(unstrsplit(exons[S4Vectors::subjectHits(hits.start)]$tx_name), paste(tx.rank$tx_name, collapse = "|"))
# hits.end.idx <- stringr::str_detect(unstrsplit(exons[S4Vectors::subjectHits(hits.end)]$tx_name),paste(tx.rank$tx_name, collapse = "|"))
# 4.filter insertion site junctions, reduce duplications
#junctions with only one side overlapping with exons:
idx <- dplyr::bind_rows(dplyr::anti_join(dplyr::as_tibble(hits.start), dplyr::as_tibble(hits.end), by='queryHits'),
dplyr::anti_join(dplyr::as_tibble(hits.end), dplyr::as_tibble(hits.start), by='queryHits'))
insSite.gr <- c(gr[hits[!same.tx,]$queryHits], partner(gr)[hits[!same.tx,]$queryHits], gr[idx$queryHits])
insSite.gr$exons <- c(exons[hits[!same.tx,]$subjectHits.x]$exon_id, exons[hits[!same.tx,]$subjectHits.y]$exon_id,
exons[idx$subjectHits]$exon_id)
insSite.gr$txs <- c(exons[hits[!same.tx,]$subjectHits.x]$tx_name, exons[hits[!same.tx,]$subjectHits.y]$tx_name,
exons[idx$subjectHits]$tx_name)
insSite.gr <- insSite.gr[!sapply(insSite.gr$txs, rlang::is_empty)]
#combine matching exons and transcripts of the same breakend
names <- unique(names(insSite.gr))
insSite.txs <- sapply(names, function(x) {Reduce(union, insSite.gr[names(insSite.gr)==x]$txs)})
insSite.exons <- sapply(names, function(x) {Reduce(union, insSite.gr[names(insSite.gr)==x]$exons)})
insSite.gr$txs <- insSite.txs[names(insSite.gr)]
insSite.gr$exons <- insSite.exons[names(insSite.gr)]
insSite.gr <- insSite.gr[!duplicated(names(insSite.gr))]
insSite.gr <- insSite.gr[!names(insSite.gr) %in% names(rt.gr)]
insSite.gr <- c(insSite.gr, gr[insSite.gr[!insSite.gr$partner %in% names(insSite.gr)]$partner])
insSite.gr$rtFound <- mapply(stringr::str_detect, insSite.gr$txs, paste(tx.rank$tx_name, collapse = "|"))
insSite.gr$rtFoundSum <- sapply(insSite.gr$rtFound, function(x) {sum(x) > 0})
#TODO: add L1/Alu annotation for insertion site filtering.
return(GRangesList(insSite = insSite.gr, rt = rt.gr))
}
}
#' Combining matching transcripts
#' @details
#' This is an internal function used to merge all overlapping transcripts of a breakpoint into one vector.
#' @param gr A GRanges object
#' @param names A vector of granges names.
#' @return A list of vectors. Each vector is named with the name of the corresponding granges.
#' @noRd
.combineMatchingTranscripts <- function(gr, names){
names <- unique(names)
txs.list <- vector(mode="list", length=length(names))
names(txs.list) <- names
for (name in names) {
#txs.list[[name]] <- name
txs.list[[name]] <- Reduce(union, gr[names(gr) == name]$txs)
}
return(txs.list)
}
#' Ranking matching transcripts
#' @details
#' This is an internal function which returns overlapping transcript names with ranking scores.
#' The ranking score is the proportion of exon-exon fusions (intronic deletion events) detected for a given transcript.
#' @param genes TxDb object of genes. hg19 and hg38 are supported in the current version.
#' @param transcripts.col A vector of transcript names.
#' @return A dataframe with two columns, tx_name and score.
#' @noRd
.scoreByTranscripts <- function(genes, transcripts.col){
overlapIntron.df <- as.data.frame(table(transcripts.col)/2)
colnames(overlapIntron.df) <- c("tx_name", "count")
overlapIntron.df <- merge(overlapIntron.df,
mcols(GenomicFeatures::transcripts(genes, columns=c("tx_name","exon_rank"),
filter=list(tx_name=overlapIntron.df[,1]))))
return(data.frame(tx_name=overlapIntron.df$tx_name,
score= overlapIntron.df$count / (sapply(overlapIntron.df$exon_rank, length)-1)))
}
|