1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485
|
\name{SummarizedExperiment-class}
\docType{class}
% Class
\alias{class:SummarizedExperiment}
\alias{SummarizedExperiment-class}
% Accessors
\alias{length,SummarizedExperiment-method}
\alias{names,SummarizedExperiment-method}
\alias{names<-,SummarizedExperiment-method}
\alias{rowData}
\alias{rowData,SummarizedExperiment-method}
\alias{rowData<-}
\alias{rowData<-,SummarizedExperiment-method}
\alias{colData}
\alias{colData,SummarizedExperiment-method}
\alias{colData<-}
\alias{colData<-,SummarizedExperiment,DataFrame-method}
\alias{assays}
\alias{assays,SummarizedExperiment-method}
\alias{assays<-}
\alias{assays<-,SummarizedExperiment,SimpleList-method}
\alias{assays<-,SummarizedExperiment,list-method}
\alias{assay}
\alias{assay,SummarizedExperiment,missing-method}
\alias{assay,SummarizedExperiment,numeric-method}
\alias{assay,SummarizedExperiment,character-method}
\alias{assay<-}
\alias{assay<-,SummarizedExperiment,missing-method}
\alias{assay<-,SummarizedExperiment,numeric-method}
\alias{assay<-,SummarizedExperiment,character-method}
\alias{assayNames}
\alias{assayNames,SummarizedExperiment-method}
\alias{assayNames<-}
\alias{assayNames<-,SummarizedExperiment,character-method}
\alias{dim,SummarizedExperiment-method}
\alias{dimnames,SummarizedExperiment-method}
\alias{dimnames<-,SummarizedExperiment,list-method}
\alias{dimnames<-,SummarizedExperiment,NULL-method}
% Subsetting
\alias{[,SummarizedExperiment-method}
\alias{[,SummarizedExperiment,ANY-method}
\alias{[,SummarizedExperiment,ANY,ANY,ANY-method}
\alias{[<-,SummarizedExperiment,ANY,ANY,SummarizedExperiment-method}
\alias{extractROWS,SummarizedExperiment,ANY-method}
\alias{replaceROWS,SummarizedExperiment-method}
\alias{subset,SummarizedExperiment-method}
% Quick colData access
\alias{[[,SummarizedExperiment,ANY,missing-method}
\alias{[[<-,SummarizedExperiment,ANY,missing-method}
\alias{$,SummarizedExperiment-method}
\alias{$<-,SummarizedExperiment-method}
% Display
\alias{show,SummarizedExperiment-method}
% Combine
\alias{rbind,SummarizedExperiment-method}
\alias{cbind,SummarizedExperiment-method}
% On-disk realization
\alias{realize,SummarizedExperiment-method}
% updateObject
\alias{updateObject,SummarizedExperiment-method}
\title{SummarizedExperiment objects}
\description{
The SummarizedExperiment class is a matrix-like container where rows
represent features of interest (e.g. genes, transcripts, exons, etc...)
and columns represent samples (with sample data summarized as a
\link{DataFrame}). A SummarizedExperiment object contains one or more
assays, each represented by a matrix-like object of numeric or other mode.
Note that SummarizedExperiment is the parent of the
\link{RangedSummarizedExperiment} class which means that all the methods
documented below also work on a \link{RangedSummarizedExperiment} object.
}
\usage{
## Constructor
# See ?RangedSummarizedExperiment for the constructor function.
## Accessors
assayNames(x, ...)
assayNames(x, ...) <- value
assays(x, ..., withDimnames=TRUE)
assays(x, ..., withDimnames=TRUE) <- value
assay(x, i, ...)
assay(x, i, ...) <- value
rowData(x, use.names=TRUE, ...)
rowData(x, ...) <- value
colData(x, ...)
colData(x, ...) <- value
#dim(x)
#dimnames(x)
#dimnames(x) <- value
## Quick colData access
\S4method{$}{SummarizedExperiment}(x, name)
\S4method{$}{SummarizedExperiment}(x, name) <- value
\S4method{[[}{SummarizedExperiment,ANY,missing}(x, i, j, ...)
\S4method{[[}{SummarizedExperiment,ANY,missing}(x, i, j, ...) <- value
## Subsetting
\S4method{[}{SummarizedExperiment}(x, i, j, ..., drop=TRUE)
\S4method{[}{SummarizedExperiment,ANY,ANY,SummarizedExperiment}(x, i, j) <- value
\S4method{subset}{SummarizedExperiment}(x, subset, select, ...)
## Combining
\S4method{cbind}{SummarizedExperiment}(..., deparse.level=1)
\S4method{rbind}{SummarizedExperiment}(..., deparse.level=1)
## On-disk realization
\S4method{realize}{SummarizedExperiment}(x, BACKEND=getRealizationBackend())
}
\arguments{
\item{x}{A SummarizedExperiment object.}
\item{...}{
For \code{assay}, \code{...} may contain \code{withDimnames}, which is
forwarded to \code{assays}.
For \code{cbind}, \code{rbind}, \code{...} contains SummarizedExperiment
objects to be combined.
For other accessors, ignored.
}
\item{value}{An object of a class specified in the S4 method
signature or as outlined in \sQuote{Details}.}
\item{i, j}{
For \code{assay}, \code{assay<-}, \code{i} is an integer or
numeric scalar; see \sQuote{Details} for additional constraints.
For \code{[,SummarizedExperiment},
\code{[,SummarizedExperiment<-}, \code{i}, \code{j} are subscripts
that can act to subset the rows and columns of \code{x}, that is the
\code{matrix} elements of \code{assays}.
For \code{[[,SummarizedExperiment},
\code{[[<-,SummarizedExperiment}, \code{i} is a scalar index (e.g.,
\code{character(1)} or \code{integer(1)}) into a column of
\code{colData}.
}
\item{name}{A symbol representing the name of a column of
\code{colData}.}
\item{withDimnames}{A \code{logical(1)}, indicating whether dimnames
should be applied to extracted assay elements. Setting
\code{withDimnames=FALSE} increases the speed and memory efficiency
with which assays are extracted. \code{withDimnames=TRUE} in the
getter \code{assays<-} allows efficient complex assignments (e.g.,
updating names of assays, \code{names(assays(x, withDimnames=FALSE))
= ...} is more efficient than \code{names(assays(x)) = ...}); it
does not influence actual assignment of dimnames to assays.}
\item{use.names}{Like \code{\link[S4Vectors]{mcols}(x)}, by default
\code{rowData(x)} propagates the rownames of \code{x} to the returned
\link[S4Vectors]{DataFrame} object (note that for a SummarizedExperiment
object, the rownames are also the names i.e. \code{rownames(x)} is
always the same as \code{names(x)}). Setting \code{use.names=FALSE}
suppresses this propagation i.e. it returns a \link[S4Vectors]{DataFrame}
object with no rownames. Use this when \code{rowData(x)} fails,
which can happen when the rownames contain NAs (because the rownames
of a SummarizedExperiment object can contain NAs, but the rownames of
a \link[S4Vectors]{DataFrame} object cannot).}
\item{drop}{A \code{logical(1)}, ignored by these methods.}
\item{deparse.level}{See \code{?base::\link[base]{cbind}} for a description of
this argument.}
\item{subset}{An expression which, when evaluated in the
context of \code{rowData(x)}, is a logical vector indicating
elements or rows to keep: missing values are taken as false.}
\item{select}{An expression which, when evaluated in the
context of \code{colData(x)}, is a logical vector indicating
elements or rows to keep: missing values are taken as false.}
\item{BACKEND}{\code{NULL} (the default), or a single string specifying the
name of the backend. When the backend is set to \code{NULL},
each element of \code{assays(x)} is realized in memory as an ordinary array
by just calling \code{as.array} on it.}
}
\details{
The SummarizedExperiment class is meant for numeric and other
data types derived from a sequencing experiment. The structure is
rectangular like a \code{matrix}, but with additional annotations on
the rows and columns, and with the possibility to manage several
assays simultaneously.
The rows of a SummarizedExperiment object represent features
of interest. Information about these features is stored in a
\link{DataFrame} object, accessible using the function
\code{rowData}. The \link{DataFrame} must have as many rows
as there are rows in the SummarizedExperiment object, with each row
of the \link{DataFrame} providing information on the feature in the
corresponding row of the SummarizedExperiment object. Columns of the
\link{DataFrame} represent different attributes of the features
of interest, e.g., gene or transcript IDs, etc.
Each column of a SummarizedExperiment object represents a sample.
Information about the samples are stored in a \link{DataFrame},
accessible using the function \code{colData}, described below.
The \link{DataFrame} must have as many rows as there are
columns in the SummarizedExperiment object, with each row of the
\link{DataFrame} providing information on the sample in the
corresponding column of the SummarizedExperiment object.
Columns of the \link{DataFrame} represent different sample
attributes, e.g., tissue of origin, etc. Columns of the
\link{DataFrame} can themselves be annotated (via the
\code{\link[S4Vectors]{mcols}} function). Column names typically
provide a short identifier unique to each sample.
A SummarizedExperiment object can also contain information about
the overall experiment, for instance the lab in which it was conducted,
the publications with which it is associated, etc. This information is
stored as a \code{list} object, accessible using the \code{metadata}
function. The form of the data associated with the experiment is left to
the discretion of the user.
The SummarizedExperiment container is appropriate for matrix-like
data. The data are accessed using the \code{assays} function,
described below. This returns a \link{SimpleList} object. Each
element of the list must itself be a matrix (of any mode) and must
have dimensions that are the same as the dimensions of the
SummarizedExperiment in which they are stored. Row and column
names of each matrix must either be \code{NULL} or match those of the
SummarizedExperiment during construction. It is convenient for
the elements of \link{SimpleList} of assays to be named.
}
\section{Constructor}{
SummarizedExperiment instances are constructed using the
\code{SummarizedExperiment} function documented in
\code{?\link{RangedSummarizedExperiment}}.
}
\section{Accessors}{
In the following code snippets, \code{x} is a SummarizedExperiment
object.
\describe{
\item{\code{assays(x)}, \code{assays(x) <- value}:}{Get or set the
assays. \code{value} is a \code{list} or \code{SimpleList}, each
element of which is a matrix with the same dimensions as
\code{x}.}
\item{\code{assay(x, i)}, \code{assay(x, i) <- value}:}{A convenient
alternative (to \code{assays(x)[[i]]}, \code{assays(x)[[i]] <-
value}) to get or set the \code{i}th (default first) assay
element. \code{value} must be a matrix of the same dimension as
\code{x}, and with dimension names \code{NULL} or consistent with
those of \code{x}.}
\item{\code{assayNames(x)}, \code{assayNames(x) <- value}:}{Get or
set the names of \code{assay()} elements.}
\item{\code{rowData(x, use.names=TRUE)}, \code{rowData(x) <- value}:}{
Get or set the row data. \code{value} is a \link{DataFrame} object.}
\item{\code{colData(x)}, \code{colData(x) <- value}:}{Get or set the
column data. \code{value} is a \link{DataFrame} object. Row
names of \code{value} must be NULL or consistent with the existing
column names of \code{x}.}
\item{\code{metadata(x)}, \code{metadata(x) <- value}:}{Get or set
the experiment data. \code{value} is a \code{list} with arbitrary
content.}
\item{\code{dim(x)}:}{Get the dimensions (features of interest x samples)
of the SummarizedExperiment.}
\item{\code{dimnames(x)}, \code{dimnames(x) <- value}:}{Get or set
the dimension names. \code{value} is usually a list of length 2,
containing elements that are either \code{NULL} or vectors of
appropriate length for the corresponding dimension. \code{value}
can be \code{NULL}, which removes dimension names. This method
implies that \code{rownames}, \code{rownames<-}, \code{colnames},
and \code{colnames<-} are all available.}
}
}
\section{Subsetting}{
In the code snippets below, \code{x} is a SummarizedExperiment object.
\describe{
\item{\code{x[i,j]}, \code{x[i,j] <- value}:}{Create or replace a
subset of \code{x}. \code{i}, \code{j} can be \code{numeric},
\code{logical}, \code{character}, or \code{missing}. \code{value}
must be a SummarizedExperiment object with dimensions,
dimension names, and assay elements consistent with the subset
\code{x[i,j]} being replaced.}
\item{\code{subset(x, subset, select)}:}{Create a subset of \code{x}
using an expression \code{subset} referring to columns of
\code{rowData(x)} and / or \code{select} referring to column names
of \code{colData(x)}.}
}
Additional subsetting accessors provide convenient access to
\code{colData} columns
\describe{
\item{\code{x$name}, \code{x$name <- value}}{Access or replace
column \code{name} in \code{x}.}
\item{\code{x[[i, ...]]}, \code{x[[i, ...]] <- value}}{Access or
replace column \code{i} in \code{x}.}
}
}
\section{Combining}{
In the code snippets below, \code{...} are SummarizedExperiment objects
to be combined.
\describe{
\item{\code{cbind(...)}:}{
\code{cbind} combines objects with the same features of interest
but different samples (columns in \code{assays}).
The colnames in \code{colData(SummarizedExperiment)} must match or
an error is thrown.
Duplicate columns of \code{rowData(SummarizedExperiment)} must
contain the same data.
Data in \code{assays} are combined by name matching; if all assay
names are NULL matching is by position. A mixture of names and NULL
throws an error.
\code{metadata} from all objects are combined into a \code{list}
with no name checking.
}
\item{\code{rbind(...)}:}{
\code{rbind} combines objects with the same samples
but different features of interest (rows in \code{assays}).
The colnames in \code{rowData(SummarizedExperiment)} must match or
an error is thrown.
Duplicate columns of \code{colData(SummarizedExperiment)} must
contain the same data.
Data in \code{assays} are combined by name matching; if all assay
names are NULL matching is by position. A mixture of names and NULL
throws an error.
\code{metadata} from all objects are combined into a \code{list}
with no name checking.
}
}
}
\section{Implementation and Extension}{
This section contains advanced material meant for package developers.
SummarizedExperiment is implemented as an S4 class, and can be extended in
the usual way, using \code{contains="SummarizedExperiment"} in the new
class definition.
In addition, the representation of the \code{assays} slot of
SummarizedExperiment is as a virtual class Assays. This
allows derived classes (\code{contains="Assays"}) to easily implement
alternative requirements for the assays, e.g., backed by file-based
storage like NetCDF or the \code{ff} package, while re-using the existing
SummarizedExperiment class without modification.
See \link{Assays} for more information.
The current \code{assays} slot is implemented as a reference class
that has copy-on-change semantics. This means that modifying non-assay
slots does not copy the (large) assay data, and at the same time the
user is not surprised by reference-based semantics. Updates to
non-assay slots are very fast; updating the assays slot itself can be
5x or more faster than with an S4 instance in the slot. One useful
technique when working with \code{assay} or \code{assays} function is
use of the \code{withDimnames=FALSE} argument, which benefits speed
and memory use by not copying dimnames from the row- and colData
elements to each assay.
}
\author{Martin Morgan, \url{mtmorgan@fhcrc.org}}
\seealso{
\itemize{
\item \link{RangedSummarizedExperiment} objects.
\item \link[S4Vectors]{DataFrame}, \link[S4Vectors]{SimpleList}, and
\link[S4Vectors]{Annotated} objects in the \pkg{S4Vectors} package.
\item The \code{\link[S4Vectors]{metadata}} and
\code{\link[S4Vectors]{mcols}} accessors in the \pkg{S4Vectors}
package.
\item \code{\link[HDF5Array]{saveHDF5SummarizedExperiment}} and
\code{\link[HDF5Array]{loadHDF5SummarizedExperiment}} in the
\pkg{HDF5Array} package for saving/loading an HDF5-based
SummarizedExperiment object to/from disk.
\item The \code{\link[DelayedArray]{realize}} generic function in the
\pkg{DelayedArray} package for more information about on-disk
realization of objects carrying delayed operations.
}
}
\examples{
nrows <- 200; ncols <- 6
counts <- matrix(runif(nrows * ncols, 1, 1e4), nrows)
colData <- DataFrame(Treatment=rep(c("ChIP", "Input"), 3),
row.names=LETTERS[1:6])
se0 <- SummarizedExperiment(assays=SimpleList(counts=counts),
colData=colData)
se0
dim(se0)
dimnames(se0)
assayNames(se0)
head(assay(se0))
assays(se0) <- endoapply(assays(se0), asinh)
head(assay(se0))
rowData(se0)
colData(se0)
se0[, se0$Treatment == "ChIP"]
subset(se0, select = Treatment == "ChIP")
## cbind() combines objects with the same features of interest
## but different samples:
se1 <- se0
se2 <- se1[,1:3]
colnames(se2) <- letters[seq_len(ncol(se2))]
cmb1 <- cbind(se1, se2)
dim(cmb1)
dimnames(cmb1)
## rbind() combines objects with the same samples but different
## features of interest:
se1 <- se0
se2 <- se1[1:50,]
rownames(se2) <- letters[seq_len(nrow(se2))]
cmb2 <- rbind(se1, se2)
dim(cmb2)
dimnames(cmb2)
## ---------------------------------------------------------------------
## ON-DISK REALIZATION
## ---------------------------------------------------------------------
setRealizationBackend("HDF5Array")
cmb3 <- realize(cmb2)
assay(cmb3, withDimnames=FALSE) # an HDF5Matrix object
}
|