File: Extensions.Rmd

package info (click to toggle)
r-bioc-summarizedexperiment 1.36.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 948 kB
  • sloc: makefile: 2
file content (1243 lines) | stat: -rw-r--r-- 37,561 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
---
title: "Extending the SummarizedExperiment class"
author: Aaron Lun
date: "Revised: 30 October, 2018"
output:
  BiocStyle::html_document:
    toc: true
    toc_float: true
vignette: >
  %\VignetteIndexEntry{2. Extending the SummarizedExperiment class}
  %\VignetteEngine{knitr::rmarkdown}
  \usepackage[utf8]{inputenc}
---

```{r, echo=FALSE, results="hide"}
knitr::opts_chunk$set(error=FALSE, warning=FALSE, message=FALSE)
```

```{r, echo=FALSE}
library(SummarizedExperiment)
library(testthat)
```

# Motivation

A large number of Bioconductor packages contain extensions of the
standard `SummarizedExperiment` class from the
[SummarizedExperiment][] package.  This allows developers to take
advantage of the power of the `SummarizedExperiment` representation
for synchronising data and metadata, while still accommodating
specialized data structures for particular scientific applications.
This document is intended to provide a developer-level "best
practices" reference for the creation of these derived classes.

# Deriving a simple class

## Overview 

To introduce various concepts, we will start off with a simple derived
class that does not add any new slots.  This is occasionally useful
when additional constraints need to be placed on the derived class.
In this example, we will assume that we want our class to minimally
hold a `"counts"` assay that contains non-negative
values^[For simplicity's sake, we won't worry about enforcing integer type, as fractional values are possible, e.g., when dealing with expected counts.].

## Defining the class and its constructor

We name our new class `CountSE` and define it using the `setClass`
function from the _methods_ package, as is conventionally done for all
S4 classes.  We use Roxygen's `#'` tags to trigger the generation of
import/export statements in the `NAMESPACE` of our package.

```{r}
#' @export
#' @import methods
#' @importClassesFrom SummarizedExperiment SummarizedExperiment
.CountSE <- setClass("CountSE", contains="SummarizedExperiment")
```

We define a constructor that accepts a count matrix to create a
`CountSE` object.  We use `...` to pass further arguments to the
`SummarizedExperiment` constructor, which allows us to avoid
re-specifying all its arguments.

```{r}
#' @export
#' @importFrom SummarizedExperiment SummarizedExperiment
CountSE <- function(counts, ...) {
    se <- SummarizedExperiment(list(counts=counts), ...)
    .CountSE(se)
}
```

## Defining a validity method

We define a validity method that enforces the constraints that we
described earlier.  This is done by defining a validity function using
`setValidity2` from the [S4Vectors][]
package^[This allows us to turn off the validity checks in internal functions where intermediate objects may not be valid within the scope of the function.].
Returning a string indicates that there is a problem and triggers an
error in the R session.

```{r}
setValidity2("CountSE", function(object) {
    msg <- NULL

    if (assayNames(object)[1] != "counts") {
        msg <- c(msg, "'counts' must be first assay")
    }

    if (min(assay(object)) < 0) {
        msg <- c(msg, "negative values in 'counts'")
    }

    if (is.null(msg)) {
        TRUE
    } else msg
})
```

The constructor yields the expected output when counts are provided:

```{r}
CountSE(matrix(rpois(100, lambda=1), ncol=5))
```

... and an (expected) error otherwise:

```{r, error=TRUE}
CountSE(matrix(rnorm(100), ncol=5))
```

## Defining a getter method

A generic is a group of functions with the same name that operate on
different classes.  Upon calling the generic on an object, the S4
dispatch system will choose the most appropriate function to use based
on the object class.  This allows users and developers to write code
that is agnostic to the type of input class.

Let's say that it is of particular scientific interest to obtain the
counts with a flipped sign.  We observe that there are no existing
generics that do this task, e.g., in [BiocGenerics][] or
[S4Vectors][]^[If you have an idea for a generally applicable generic that is not yet available, please contact the Bioconductor core team.].
Instead, we define a new generic `negcounts`:

```{r}
#' @export
setGeneric("negcounts", function(x, ...) standardGeneric("negcounts"))
```

We then define a specific method for our `CountSE`
class^[The `...` in the generic function definition means that custom arguments like `withDimnames=` can be provided for specific methods, if necessary.]:

```{r}
#' @export
#' @importFrom SummarizedExperiment assay
setMethod("negcounts", "CountSE", function(x, withDimnames=TRUE) {
    -assay(x, withDimnames=withDimnames)
})
```

If any other developers need to compute negative counts for their own
classes, they can simply use the `negcounts` generic defined in our
package.

## Some comments on package organization

It is convention to put all class definitions (i.e., the `setClass`
statement) in a file named `AllClasses.R`, all new generic definitions
in a file named `AllGenerics.R`, and all method definitions in files
that are alphanumerically ordered below the first two.  This is
because R collates files by alphanumeric order when building a
package.  It is critical that the collation (and definition) of the
classes and generics occurs **before** that of the corresponding
methods, otherwise errors will occur.  If alphanumeric ordering is
inappropriate, developers can manually specify the collation order
using `Collate:` in the `DESCRIPTION` file - see
[Writing R Extensions][R-exts] for more details.

[R-exts]: https://cran.r-project.org/doc/manuals/r-release/R-exts.html#The-DESCRIPTION-file

# Deriving a class with custom slots 

## Class definition

In practice, most derived classes will need to store
application-specific data structures.  For the rest of this document,
we will be considering the derivation of a class with custom slots to
hold such structures.  First, we consider 1D data structures:

- `rowVec`: 1:1 mapping from each value to a row of the
  `SummarizedExperiment`.
- `colVec`: 1:1 mapping from each value to a column of the
  `SummarizedExperiment`.

Any 1D structure can be used if it supports `length`, `c`,
`[` and `[<-`.  For simplicity, we will use integer vectors for the `*.vec` 
slots.

We also consider some 2D data structures: 

- `rowToRowMat`: 1:1 mapping from each row to a row of the 
  `SummarizedExperiment`.
- `colToColMat`: 1:1 mapping from each column to a column of the 
  `SummarizedExperiment`.
- `rowToColMat`: 1:1 mapping from each row to a column of the 
  `SummarizedExperiment`.
- `colToRowMat`: 1:1 mapping from each column to a row of the 
  `SummarizedExperiment`.

Any 2D structure can be used if it supports `nrow`, `ncol`, `cbind`, `rbind`, 
`[` and `[<-`.  For simplicity, we will use (numeric) matrices for the `*.mat` 
slots.

Definition of the class is achieved using `setClass`, using the `slots=` 
argument to specify the new custom slots^[It does no harm to repeat the Roxygen tags, which explicitly specifies the imports required for each class and function.].

```{r}
#' @export
#' @import methods
#' @importClassesFrom SummarizedExperiment SummarizedExperiment
.ExampleClass <- setClass("ExampleClass",
    slots= representation(
        rowVec="integer",
        colVec="integer",
        rowToRowMat="matrix",
        colToColMat="matrix",
        rowToColMat="matrix",
        colToRowMat="matrix"
    ),
    contains="SummarizedExperiment"
)
```

## Defining the constructor

The constructor should provide some arguments for setting the new
slots in the derived class definition.  The default values should be
set such that calling the constructor without any arguments returns a
valid `ExampleClass` object.

```{r}
#' @export
#' @importFrom SummarizedExperiment SummarizedExperiment
ExampleClass <- function(
    rowVec=integer(0), 
    colVec=integer(0),
    rowToRowMat=matrix(0,0,0),
    colToColMat=matrix(0,0,0),
    rowToColMat=matrix(0,0,0),
    colToRowMat=matrix(0,0,0),
    ...)
{
    se <- SummarizedExperiment(...)
    .ExampleClass(se, rowVec=rowVec, colVec=colVec,
        rowToRowMat=rowToRowMat, colToColMat=colToColMat, 
        rowToColMat=rowToColMat, colToRowMat=colToRowMat)
}
```

## Creating getter methods

### For 1D data structures

We define some getter generics for the custom slots containing the 1D
structures.

```{r}
#' @export
setGeneric("rowVec", function(x, ...) standardGeneric("rowVec"))

#' @export
setGeneric("colVec", function(x, ...) standardGeneric("colVec"))
```

We then define the class-specific methods for these generics.  Note
the `withDimnames=TRUE` argument, which enforces consistency between
the names of the extracted object and the original
`SummarizedExperiment`.  It is possible to turn this off for greater
efficiency, e.g., for internal usage where names are not necessary.

```{r}
#' @export
setMethod("rowVec", "ExampleClass", function(x, withDimnames=TRUE) {
    out <- x@rowVec
    if (withDimnames) 
        names(out) <- rownames(x)
    out
})

#' @export
setMethod("colVec", "ExampleClass", function(x, withDimnames=TRUE) {
    out <- x@colVec
    if (withDimnames) 
        names(out) <- colnames(x)
    out
})
```

### For 2D data structures

We repeat this process for the 2D structures.

```{r}
#' @export
setGeneric("rowToRowMat", function(x, ...) standardGeneric("rowToRowMat"))

#' @export
setGeneric("colToColMat", function(x, ...) standardGeneric("colToColMat"))

#' @export
setGeneric("rowToColMat", function(x, ...) standardGeneric("rowToColMat"))

#' @export
setGeneric("colToRowMat", function(x, ...) standardGeneric("colToRowMat"))
```

Again, we define class-specific methods for these generics.

```{r}
#' @export
setMethod("rowToRowMat", "ExampleClass", function(x, withDimnames=TRUE) {
    out <- x@rowToRowMat
    if (withDimnames) 
        rownames(out) <- rownames(x)
    out
})

#' @export
setMethod("colToColMat", "ExampleClass", function(x, withDimnames=TRUE) {
    out <- x@colToColMat
    if (withDimnames) 
        colnames(out) <- colnames(x)
    out
})

#' @export
setMethod("rowToColMat", "ExampleClass", function(x, withDimnames=TRUE) {
    out <- x@rowToColMat
    if (withDimnames) 
        rownames(out) <- colnames(x)
    out
})

#' @export
setMethod("colToRowMat", "ExampleClass", function(x, withDimnames=TRUE) {
    out <- x@colToRowMat
    if (withDimnames) 
        colnames(out) <- rownames(x)
    out
})
```

### For `SummarizedExperiment` slots

The getter methods defined in [SummarizedExperiment][] can be directly
used to retrieve data from slots in the base class.  These should
generally not require any re-defining for a derived class.  However,
if it is necessary, the methods should use `callNextMethod`
internally.  This will call the method for the base
`SummarizedExperiment` class, the output of which can be modified as
required.

```{r}
#' @export
#' @importMethodsFrom SummarizedExperiment rowData
setMethod("rowData", "ExampleClass", function(x, ...) {
    out <- callNextMethod()
    
    # Do something extra here.
    out$extra <- runif(nrow(out))

    # Returning the rowData object.
    out
})
```

## Defining the validity method

We use `setValidity2` to define a validity function for
`ExampleClass`.  We use the previously defined getter functions to
retrieve the slot values rather than using `@`.  This is generally a
good idea to keep the interface separate from the
implementation^[This protects against changes to the slot names, and simplifies development when the storage mode differs from the conceptual meaning of the data, e.g., for efficiency purposes.].
We also set `withDimnames=FALSE` in our getter calls, as consistent
naming is not necessary for internal functions.

```{r}
#' @importFrom BiocGenerics NCOL NROW
setValidity2("ExampleClass", function(object) {
    NR <- NROW(object)
    NC <- NCOL(object)
    msg <- NULL

    # 1D
    if (length(rowVec(object, withDimnames=FALSE)) != NR) {
        msg <- c(msg, "'rowVec' should have length equal to the number of rows")
    }
    if (length(colVec(object, withDimnames=FALSE)) != NC) {
        msg <- c(
            msg, "'colVec' should have length equal to the number of columns"
        )
    }

    # 2D
    if (NROW(rowToRowMat(object, withDimnames=FALSE)) != NR) {
        msg <- c(
            msg, "'nrow(rowToRowMat)' should be equal to the number of rows"
        )
    }
    if (NCOL(colToColMat(object, withDimnames=FALSE)) != NC) {
        msg <- c(
            msg, "'ncol(colToColMat)' should be equal to the number of columns"
        )
    }
    if (NROW(rowToColMat(object, withDimnames=FALSE)) != NC) {
        msg <- c(
            msg, "'nrow(rowToColMat)' should be equal to the number of columns"
        )
    }
    if (NCOL(colToRowMat(object, withDimnames=FALSE)) != NR) {
        msg <- c(
            msg, "'ncol(colToRowMat)' should be equal to the number of rows"
        )
    }

    if (length(msg)) {
        msg
    } else TRUE
})
```

We use the `NCOL` and `NROW` methods from [BiocGenerics][] as these
support various Bioconductor objects, whereas the base methods do not.

## Creating a `show` method

The default `show` method will only display information about the
`SummarizedExperiment` slots.  We can augment it to display some
relevant aspects of the custom slots.  This is done by calling the
base `show` method before printing additional fields as necessary.

```{r}
#' @export
#' @importMethodsFrom SummarizedExperiment show
setMethod("show", "ExampleClass", function(object) {
    callNextMethod()
    cat(
        "rowToRowMat has ", ncol(rowToRowMat(object)), " columns\n",
        "colToColMat has ", nrow(colToColMat(object)), " rows\n",
        "rowToColMat has ", ncol(rowToRowMat(object)), " columns\n",
        "colToRowMat has ", ncol(rowToRowMat(object)), " rows\n",
        sep=""
    )
})
```

## Creating setter methods

### For 1D data structures

We define some setter methods for the custom slots containing the 1D
structures.  Again, this usually requires the creation of new
generics.

```{r}
#' @export
setGeneric("rowVec<-", function(x, ..., value) standardGeneric("rowVec<-"))

#' @export
setGeneric("colVec<-", function(x, ..., value) standardGeneric("colVec<-"))
```

We define the class-specific methods for these generics.  Note that
use of `validObject` to ensure that the assigned input is still valid.

```{r}
#' @export
setReplaceMethod("rowVec", "ExampleClass", function(x, value) {
    x@rowVec <- value
    validObject(x)
    x
})

#' @export
setReplaceMethod("colVec", "ExampleClass", function(x, value) {
    x@colVec <- value
    validObject(x)
    x
})
```

### For 2D data structures

We repeat this process for the 2D structures.

```{r}
#' @export
setGeneric("rowToRowMat<-", function(x, ..., value)
    standardGeneric("rowToRowMat<-")
)

#' @export
setGeneric("colToColMat<-", function(x, ..., value)
    standardGeneric("colToColMat<-")
)

#' @export
setGeneric("rowToColMat<-", function(x, ..., value) 
    standardGeneric("rowToColMat<-")
)

#' @export
setGeneric("colToRowMat<-", function(x, ..., value)
    standardGeneric("colToRowMat<-")
)
```

Again, we define class-specific methods for these generics.

```{r}
#' @export
setReplaceMethod("rowToRowMat", "ExampleClass", function(x, value) {
    x@rowToRowMat <- value
    validObject(x)
    x
})

#' @export
setReplaceMethod("colToColMat", "ExampleClass", function(x, value) {
    x@colToColMat <- value
    validObject(x)
    x
})

#' @export
setReplaceMethod("rowToColMat", "ExampleClass", function(x, value) {
    x@rowToColMat <- value
    validObject(x)
    x
})

#' @export
setReplaceMethod("colToRowMat", "ExampleClass", function(x, value) {
    x@colToRowMat <- value
    validObject(x)
    x
})
```

### For `SummarizedExperiment` slots

Again, we can use the setter methods defined in
[SummarizedExperiment][] to modify slots in the base class.  These
should generally not require any re-defining.  However, if it is
necessary, the methods should use `callNextMethod` internally:

```{r}
#' @export
#' @importMethodsFrom SummarizedExperiment "rowData<-"
setReplaceMethod("rowData", "ExampleClass", function(x, ..., value) {
    y <- callNextMethod() # returns a modified ExampleClass
    
    # Do something extra here.
    message("hi!\n")

    y
})
```

### Other types of modifying functions 

Imagine that we want to write a function that returns a modified
`ExampleClass`, e.g., where the signs of the `*.vec` fields are
reversed.  For example, we will pretend that we want to write a
`normalize` function, using the generic from [BiocGenerics][].


```{r}
#' @export
#' @importFrom BiocGenerics normalize
setMethod("normalize", "ExampleClass", function(object) {
    # do something exciting, i.e., flip the signs
    new.row <- -rowVec(object, withDimnames=FALSE) 
    new.col <- -colVec(object, withDimnames=FALSE)
    BiocGenerics:::replaceSlots(object, rowVec=new.row, 
        colVec=new.col, check=FALSE)
})
```

We use `BiocGenerics:::replaceSlots` instead of the setter methods
that we defined above.  This is because our setters perform validity
checks that are unnecessary if we know that the modification cannot
alter the validity of the object.  The `replaceSlots` function allows
us to skip these validity checks (`check=FALSE`) for greater
efficiency.

## Enabling subsetting operations

### Getting a subset

A key strength of the `SummarizedExperiment` class is that subsetting
is synchronized across the various (meta)data fields.  This avoids
book-keeping errors and guarantees consistency throughout an
interactive analysis session.  We need to ensure that the values in
our custom slots are also subsetted.

```{r}
#' @export
setMethod("[", "ExampleClass", function(x, i, j, drop=TRUE) {
    rv <- rowVec(x, withDimnames=FALSE)
    cv <- colVec(x, withDimnames=FALSE)
    rrm <- rowToRowMat(x, withDimnames=FALSE)
    ccm <- colToColMat(x, withDimnames=FALSE)
    rcm <- rowToColMat(x, withDimnames=FALSE)
    crm <- colToRowMat(x, withDimnames=FALSE)

    if (!missing(i)) {
        if (is.character(i)) {
            fmt <- paste0("<", class(x), ">[i,] index out of bounds: %s")
            i <- SummarizedExperiment:::.SummarizedExperiment.charbound(
                i, rownames(x), fmt
            )
        }
        i <- as.vector(i)
        rv <- rv[i]
        rrm <- rrm[i,,drop=FALSE]
        crm <- crm[,i,drop=FALSE]
    }

    if (!missing(j)) {
        if (is.character(j)) {
            fmt <- paste0("<", class(x), ">[,j] index out of bounds: %s")
            j <- SummarizedExperiment:::.SummarizedExperiment.charbound(
                j, colnames(x), fmt
            )
        }
        j <- as.vector(j)
        cv <- cv[j]
        ccm <- ccm[,j,drop=FALSE]
        rcm <- rcm[j,,drop=FALSE]
    }

    out <- callNextMethod()
    BiocGenerics:::replaceSlots(out, rowVec=rv, colVec=cv,
        rowToRowMat=rrm, colToColMat=ccm, 
        rowToColMat=rcm, colToRowMat=crm, check=FALSE)
})
```

Note the special code for handling character indices, and the use of
`callNextMethod` to subset the base `SummarizedExperiment` slots.

### Assigning a subset

Subset assignment can be similarly performed, though the signature
needs to be specified so that the replacement value is of the same
class.  This is generally necessary for sensible replacement of the
custom slots.

```{r}
#' @export
setReplaceMethod("[", c("ExampleClass", "ANY", "ANY", "ExampleClass"),
        function(x, i, j, ..., value) {
    rv <- rowVec(x, withDimnames=FALSE)
    cv <- colVec(x, withDimnames=FALSE)
    rrm <- rowToRowMat(x, withDimnames=FALSE)
    ccm <- colToColMat(x, withDimnames=FALSE)
    rcm <- rowToColMat(x, withDimnames=FALSE)
    crm <- colToRowMat(x, withDimnames=FALSE)

    if (!missing(i)) {
        if (is.character(i)) {
            fmt <- paste0("<", class(x), ">[i,] index out of bounds: %s")
            i <- SummarizedExperiment:::.SummarizedExperiment.charbound(
                i, rownames(x), fmt
            )
        }
        i <- as.vector(i)
        rv[i] <- rowVec(value, withDimnames=FALSE)
        rrm[i,] <- rowToRowMat(value, withDimnames=FALSE)
        crm[,i] <- colToRowMat(value, withDimnames=FALSE)
    }

    if (!missing(j)) {
        if (is.character(j)) {
            fmt <- paste0("<", class(x), ">[,j] index out of bounds: %s")
            j <- SummarizedExperiment:::.SummarizedExperiment.charbound(
                j, colnames(x), fmt
            )
        }
        j <- as.vector(j)
        cv[j] <- colVec(value, withDimnames=FALSE)
        ccm[,j] <- colToColMat(value, withDimnames=FALSE)
        rcm[j,] <- rowToColMat(value, withDimnames=FALSE)
    }

    out <- callNextMethod()
    BiocGenerics:::replaceSlots(out, rowVec=rv, colVec=cv,
        rowToRowMat=rrm, colToColMat=ccm, 
        rowToColMat=rcm, colToRowMat=crm, check=FALSE)
})
```

## Defining combining methods

### By row

We need to define a `rbind` method for our custom class.  This is done
by combining the custom per-row slots across class instances.

```{r}
#' @export
setMethod("rbind", "ExampleClass", function(..., deparse.level=1) {
    args <- list(...)
    all.rv <- lapply(args, rowVec, withDimnames=FALSE)
    all.rrm <- lapply(args, rowToRowMat, withDimnames=FALSE)
    all.crm <- lapply(args, colToRowMat, withDimnames=FALSE)

    all.rv <- do.call(c, all.rv)
    all.rrm <- do.call(rbind, all.rrm)
    all.crm <- do.call(cbind, all.crm)

    # Checks for identical column state.
    ref <- args[[1]]
    ref.cv <- colVec(ref, withDimnames=FALSE)
    ref.ccm <- colToColMat(ref, withDimnames=FALSE)
    ref.rcm <- rowToColMat(ref, withDimnames=FALSE)
    for (x in args[-1]) {
        if (!identical(ref.cv, colVec(x, withDimnames=FALSE)) 
            || !identical(ref.ccm, colToColMat(x, withDimnames=FALSE))
            || !identical(ref.rcm, rowToColMat(x, withDimnames=FALSE)))
        {
            stop("per-column values are not compatible")
        }
    }
 
    old.validity <- S4Vectors:::disableValidity()
    S4Vectors:::disableValidity(TRUE)
    on.exit(S4Vectors:::disableValidity(old.validity))

    out <- callNextMethod()
    BiocGenerics:::replaceSlots(out, rowVec=all.rv,
        rowToRowMat=all.rrm, colToRowMat=all.crm, 
        check=FALSE)
})
```

We check the other per-column slots across all elements to ensure that
they are the same.  This protects the user against combining
incompatible objects.  However, depending on the application, this may
not be necessary (or too costly) for all slots, in which case it can
be limited to critical slots.

We also use the `disableValidity` method to avoid the validity check
in the base `cbind` method.  This is because the object is technically
invalid when the base slots are combined but before it is updated with
the new combined values for the custom slots.  The `on.exit` call
ensures that the original validity setting is restored upon exit of
the function.

### By column

We similarly define a `cbind` method to handle the custom slots.

```{r}
#' @export
setMethod("cbind", "ExampleClass", function(..., deparse.level=1) {
    args <- list(...)
    all.cv <- lapply(args, colVec, withDimnames=FALSE)
    all.ccm <- lapply(args, colToColMat, withDimnames=FALSE)
    all.rcm <- lapply(args, rowToColMat, withDimnames=FALSE)

    all.cv <- do.call(c, all.cv)
    all.ccm <- do.call(cbind, all.ccm)
    all.rcm <- do.call(rbind, all.rcm)

    # Checks for identical column state.
    ref <- args[[1]]
    ref.rv <- rowVec(ref, withDimnames=FALSE)
    ref.rrm <- rowToRowMat(ref, withDimnames=FALSE)
    ref.crm <- colToRowMat(ref, withDimnames=FALSE)
    for (x in args[-1]) {
        if (!identical(ref.rv, rowVec(x, withDimnames=FALSE)) 
            || !identical(ref.rrm, rowToRowMat(x, withDimnames=FALSE))
            || !identical(ref.crm, colToRowMat(x, withDimnames=FALSE)))
        {
            stop("per-row values are not compatible")
        }
    }

    old.validity <- S4Vectors:::disableValidity()
    S4Vectors:::disableValidity(TRUE)
    on.exit(S4Vectors:::disableValidity(old.validity))

    out <- callNextMethod()
    BiocGenerics:::replaceSlots(out, colVec=all.cv,
        colToColMat=all.ccm, rowToColMat=all.rcm, 
        check=FALSE)
})
```

## Defining coercion methods

### Coercion from `SummarizedExperiment`

We define a method to coerce `SummarizedExperiment` objects into our new `ExampleClass` class.

```{r}
#' @exportMethods coerce
setAs("SummarizedExperiment", "ExampleClass", function(from) {
    new("ExampleClass", from, 
        rowVec=integer(nrow(from)), 
        colVec=integer(ncol(from)),
        rowToRowMat=matrix(0,nrow(from),0),
        colToColMat=matrix(0,0,ncol(from)),
        rowToColMat=matrix(0,ncol(from),0),
        colToRowMat=matrix(0,0,nrow(from)))
})
```

... which works as expected:

```{r}
se <- SummarizedExperiment(matrix(rpois(100, lambda=1), ncol=5))
as(se, "CountSE")
```

This was not strictly necessary for our previous `CountSE` class as no new slots were added.
Of course, developers can still explicitly write a conversion method perform additional work to achieve a "sensible" conversion - 
for example, one might take the absolute values of all entries of the first matrix to ensure that the `CountSE` is valid for all input `SummarizedExperiment` objects.

### Deriving from a `RangedSummarizedExperiment`

Note that, if we were deriving from a `RangedSummarizedExperiment` (e.g., for some `ExampleClassRanged`), 
it would be necessary to define explicit conversions from both `RangedSummarizedExperiment` _and_ `SummarizedExperment` to `ExampleClassRanged`.
In theory, we should only have to define a conversion from `RangedSummarizedExperiment` to `ExampleClassRanged` - 
then, any attempt to convert from a `SummarizedExperiment` to `ExampleClassRanged` would:

1. Use the existing `SummarizedExperiment` to `RangedSummarizedExperiment` converter defined in `r Biocpkg("SummarizedExperiment")`, and then
2. Use the new `RangedSummarizedExperiment` to `ExampleClassRanged` converter that we just defined.

Unfortunately, in cases involving conversion to non-direct subclasses, the S4 system automatically creates methods for any conversions that are not explicitly defined.
This means that the correct "chain" of methods listed above is not used when converting from a `SummarizedExperiment` to a `ExampleClassRanged` object.
The automatically generated method is used instead, which may not yield a valid object when the specifics of the conversion are ignored.
We avoid this scenario by explicitly defining converters for both `SummarizedExperiment` and `RangedSummarizedExperiment` to `ExampleClassRanged`.

# Unit testing procedures

## Overview

We test our new methods using the `expect_*` functions from the
[testthat][] package.  Each function will test an expression and will
raise an error if the output is not as expected.  This can be used to
construct unit tests for the `tests/` subdirectory of the package.
Unit testing ensures that the methods behave as expected, especially
after any refactoring that may be performed in the future.

For testing, we will construct an instance of `ExampleClass` that has
10 rows and 7 columns:

```{r}
RV <- 1:10
CV <- sample(50, 7)
RRM <- matrix(runif(30), nrow=10)
CCM <- matrix(rnorm(14), ncol=7)
RCM <- matrix(runif(21), nrow=7)
CRM <- matrix(rnorm(20), ncol=10)

thing <- ExampleClass(rowVec=RV, colVec=CV,
    rowToRowMat=RRM, colToColMat=CCM,
    rowToColMat=RCM, colToRowMat=CRM,
    assays=list(counts=matrix(rnorm(70), nrow=10)),
    colData=DataFrame(whee=LETTERS[1:7]),
    rowData=DataFrame(yay=letters[1:10])
)
```

We will also add some row and column names, which will come in handy
later.

```{r}
rownames(thing) <- paste0("FEATURE_", seq_len(nrow(thing)))
colnames(thing) <- paste0("SAMPLE_", seq_len(ncol(thing)))
thing
```

## Constructor

We test that the `thing` object we constructed is valid:

```{r}
expect_true(validObject(thing))
```

Another useful set of unit tests involves checking that the default
constructors (internal and exported) yield valid objects:

```{r}
expect_true(validObject(.ExampleClass())) # internal
expect_true(validObject(ExampleClass())) # exported
```

We can also verify that the validity method fails on invalid objects:

```{r}
expect_error(ExampleClass(rowVec=1), "rowVec")
expect_error(ExampleClass(colVec=1), "colVec")
expect_error(ExampleClass(rowToRowMat=rbind(1)), "rowToRowMat")
expect_error(ExampleClass(colToColMat=rbind(1)), "colToColMat")
expect_error(ExampleClass(rowToColMat=rbind(1)), "rowToColMat")
expect_error(ExampleClass(colToRowMat=rbind(1)), "colToRowMat")
```

Finally, we check that the coercion method yields a valid object.

```{r}
se <- as(thing, "SummarizedExperiment")
conv <- as(se, "ExampleClass")
expect_true(validObject(conv))
```

## Getters

Testing the 1D getter methods:

```{r}
expect_identical(names(rowVec(thing)), rownames(thing))
expect_identical(rowVec(thing, withDimnames=FALSE), RV)

expect_identical(names(colVec(thing)), colnames(thing))
expect_identical(colVec(thing, withDimnames=FALSE), CV)
```

Testing the 2D getter methods:

```{r}
expect_identical(rowToRowMat(thing, withDimnames=FALSE), RRM)
expect_identical(rownames(rowToRowMat(thing)), rownames(thing))

expect_identical(colToColMat(thing, withDimnames=FALSE), CCM)
expect_identical(colnames(colToColMat(thing)), colnames(thing))

expect_identical(rowToColMat(thing, withDimnames=FALSE), RCM)
expect_identical(rownames(rowToColMat(thing)), colnames(thing))

expect_identical(colToRowMat(thing, withDimnames=FALSE), CRM)
expect_identical(colnames(colToRowMat(thing)), rownames(thing))
```

Testing the custom `rowData` method:

```{r}
expect_true("extra" %in% colnames(rowData(thing)))
```

## Setters

Testing the 1D setter methods:

```{r}
rowVec(thing) <- 0:9
expect_equivalent(rowVec(thing), 0:9)

colVec(thing) <- 7:1
expect_equivalent(colVec(thing), 7:1)
```

Testing the 2D setter methods:

```{r}
old <- rowToRowMat(thing)
rowToRowMat(thing) <- -old
expect_equivalent(rowToRowMat(thing), -old)

old <- colToColMat(thing)
colToColMat(thing) <- 2 * old
expect_equivalent(colToColMat(thing), 2 * old)

old <- rowToColMat(thing)
rowToColMat(thing) <- old + 1
expect_equivalent(rowToColMat(thing), old + 1)

old <- colToRowMat(thing) 
colToRowMat(thing) <- old / 10
expect_equivalent(colToRowMat(thing), old / 10)
```

Testing our custom `rowData<-` method:

```{r}
expect_message(rowData(thing) <- 1, "hi")
```

We ensure that we can successfully trigger errors on the validity
method:

```{r}
expect_error(rowVec(thing) <- 0, "rowVec")
expect_error(colVec(thing) <- 0, "colVec")
expect_error(rowToRowMat(thing) <- rbind(0), "rowToRowMat")
expect_error(colToColMat(thing) <- rbind(0), "colToColMat")
expect_error(rowToColMat(thing) <- rbind(0), "rowToColMat")
expect_error(colToRowMat(thing) <- rbind(0), "colToRowMat")
```

## Other modifying functions

We test our new `normalize` method:

```{r}
modified <- normalize(thing)
expect_equal(rowVec(modified), -rowVec(thing))
expect_equal(colVec(modified), -colVec(thing))
```

## Subsetting methods

Subsetting by row:

```{r}
subbyrow <- thing[1:5,]
expect_identical(rowVec(subbyrow), rowVec(thing)[1:5])
expect_identical(rowToRowMat(subbyrow), rowToRowMat(thing)[1:5,])
expect_identical(colToRowMat(subbyrow), colToRowMat(thing)[,1:5])

# columns unaffected...
expect_identical(colVec(subbyrow), colVec(thing)) 
expect_identical(colToColMat(subbyrow), colToColMat(thing))
expect_identical(rowToColMat(subbyrow), rowToColMat(thing))
```

Subsetting by column:

```{r}
subbycol <- thing[,1:2]
expect_identical(colVec(subbycol), colVec(thing)[1:2])
expect_identical(colToColMat(subbycol), colToColMat(thing)[,1:2])
expect_identical(rowToColMat(subbycol), rowToColMat(thing)[1:2,])

# rows unaffected...
expect_identical(rowVec(subbycol), rowVec(thing)) 
expect_identical(rowToRowMat(subbycol), rowToRowMat(thing))
expect_identical(colToRowMat(subbycol), colToRowMat(thing))
```

Checking that subsetting to create an empty object is possible:

```{r}
norow <- thing[0,]
expect_true(validObject(norow))
expect_identical(nrow(norow), 0L)

nocol <- thing[,0]
expect_true(validObject(nocol))
expect_identical(ncol(nocol), 0L)
```

Subset assignment:

```{r}
modified <- thing
modified[1:5,1:2] <- thing[5:1,2:1]

rperm <- c(5:1, 6:nrow(thing))
expect_identical(rowVec(modified), rowVec(thing)[rperm])
expect_identical(rowToRowMat(modified), rowToRowMat(thing)[rperm,])
expect_identical(colToRowMat(modified), colToRowMat(thing)[,rperm])

cperm <- c(2:1, 3:ncol(thing))
expect_identical(colVec(modified), colVec(thing)[cperm])
expect_identical(colToColMat(modified), colToColMat(thing)[,cperm])
expect_identical(rowToColMat(modified), rowToColMat(thing)[cperm,])
```

Checking that we obtain the same object after trivial assignment
operations:

```{r}
modified <- thing
modified[0,] <- thing[0,]
expect_equal(modified, thing)
modified[1,] <- thing[1,]
expect_equal(modified, thing)
modified[,0] <- thing[,0]
expect_equal(modified, thing)
modified[,1] <- thing[,1]
expect_equal(modified, thing)
```

We double-check that we can get an error upon invalid assignment:

```{r}
expect_error(modified[1,1] <- thing[0,0], "replacement has length zero")
```

## Combining methods

Combining by row:

```{r}
combined <- rbind(thing, thing)

rtwice <- rep(seq_len(nrow(thing)), 2)
expect_identical(rowVec(combined), rowVec(thing)[rtwice])
expect_identical(rowToRowMat(combined), rowToRowMat(thing)[rtwice,])
expect_identical(colToRowMat(combined), colToRowMat(thing)[,rtwice])

# Columns are unaffected:
expect_identical(colVec(combined), colVec(thing))
expect_identical(colToColMat(combined), colToColMat(thing))
expect_identical(rowToColMat(combined), rowToColMat(thing))
```

And combining by column.  We use `test_equivalent` here for
simplicity, as column names are altered to preserve uniqueness.

```{r}
combined <- cbind(thing, thing)

ctwice <- rep(seq_len(ncol(thing)), 2)
expect_equivalent(colVec(combined), colVec(thing)[ctwice]) 
expect_equivalent(colToColMat(combined), colToColMat(thing)[,ctwice])
expect_equivalent(rowToColMat(combined), rowToColMat(thing)[ctwice,])

# Rows are unaffected:
expect_equivalent(rowVec(combined), rowVec(thing)) 
expect_equivalent(rowToRowMat(combined), rowToRowMat(thing))
expect_equivalent(colToRowMat(combined), colToRowMat(thing))
```

Checking that we get the same object if we combine a single object or
an empty object:

```{r}
expect_equal(thing, rbind(thing))
expect_equal(thing, rbind(thing, thing[0,]))

expect_equal(thing, cbind(thing))
expect_equal(thing, cbind(thing, thing[,0]))
```

And checking that the compatibility errors are properly thrown:

```{r}
expect_error(rbind(thing, thing[,ncol(thing):1]), "not compatible")
expect_error(cbind(thing, thing[nrow(thing):1,]), "not compatible")
```

# Documentation

We suggest creating at least two separate documentation (i.e. `*.Rd`)
files.  The first file would document the class and the constructor:

```
\name{ExampleClass class}

\alias{ExampleClass-class}
\alias{ExampleClass}

\title{The ExampleClass class}
\description{An overview of the ExampleClass class and constructor.}

\usage{
ExampleClass(rowVec=integer(0), colVec=integer(0),
    # etc., etc., I won't write it all out here.
)
}

\arguments{
    \item{rowVec}{An integer vector mapping to the rows, representing
        something important.}

    \item{colVec}{An integer vector mapping to the columns, representing
        something else that's important.}

    % And so on...
}

\details{
    % Some context on why this class and its slots are necessary.
    The ExampleClass provides an example of how to derive from the
    SummarizedExperiment class.  Its slots have no scientific meaning and
    are purely for demonstration purposes.
}
```

The second file would document all of the individual methods:

```
\name{ExampleClass methods}

% New generics:
\alias{rowVec}
\alias{rowVec,ExampleClass-method}
\alias{rowVec<-}
\alias{rowVec<-,ExampleClass-method}
%% And so on...

% Already have a generic:
\alias{[,ExampleClass-method}
\alias{[,ExampleClass,ANY-method}
\alias{[,ExampleClass,ANY,ANY-method}

\alias{rbind,ExampleClass-method}
%% And so on...

\title{ExampleClass methods}
\description{Methods for the ExampleClass class.}

\usage{
\S4method{rowVec}{ExampleClass}(x, withDimnames=FALSE)

\S4method{rowVec}{ExampleClass}(x) <- value

\S4method{[}{ExampleClass}(x, i, j, drop=TRUE)

\S4method{rbind}{ExampleClass}(..., , i, j, drop=TRUE)

%% And so on...
}

\arguments{
    \item{x}{An ExampleClass object.}

    \item{withDimnames}{A logical scalar indicating whether dimension names
        from \code{x} should be returned.}

    \item{value}{
        For \code{rowVec}, an integer vector of length equal to the number of 
        rows.

        For \code{colVec}, an integer vector of length equal to the number of 
        columns.
    }

    %% And so on...
}

\section{Accessors}{
    % Add some details about accessor behaviour here.
}

\section{Subsetting}{
    % Add some details about subsetting behaviour here.
}

\section{Combining}{
    % Add some details about combining behaviour here.
}
```

# Session information

```{r}
sessionInfo()
```

[BiocGenerics]: https://bioconductor.org/packages/BiocGenerics
[S4Vectors]: https://bioconductor.org/packages/S4Vectors
[SummarizedExperiment]: https://bioconductor.org/packages/SummarizedExperiment
[testthat]: https://cran.r-project.org/package=testthat