1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037
|
#' @title Hierarchical cluster analysis
#' @description Hierarchical cluster analysis using several methods such as
#' ward.D", "ward.D2", "single", "complete", "average" (= UPGMA),
#' "mcquitty" (= WPGMA), "median" (= WPGMC) or "centroid" (= UPGMC).
#' @param tabDF is a dataframe or numeric matrix, each row represents a gene,
#' each column represents a sample come from TCGAPrepare.
#' @param method is method to be used for generic cluster such as 'hclust'
#' or 'consensus'
#' @param methodHC is method to be used for Hierarchical cluster.
#' @import stats
#' @export
#' @return object of class hclust if method selected is 'hclust'.
#' If method selected is 'Consensus' returns a list of length maxK
#' (maximum cluster number to evaluate.). Each element is a list containing
#' consensusMatrix (numerical matrix), consensusTree (hclust), consensusClass
#' (consensus class assignments). ConsensusClusterPlus also produces images.
TCGAanalyze_Clustering <- function(
tabDF,
method,
methodHC = "ward.D2"
) {
if (!requireNamespace("ConsensusClusterPlus", quietly = TRUE)) {
stop("ConsensusClusterPlus is needed. Please install it.", call. = FALSE)
}
if (method == "hclust") {
ans <- hclust(ddist <- dist(tabDF), method = methodHC)
}
if (method == "consensus") {
sHc <- hclust(ddist <- dist(tabDF), method = methodHC)
ans <- ConsensusClusterPlus::ConsensusClusterPlus(
ddist,
maxK = 7,
pItem = 0.9,
reps = 1000,
title = "mc_consensus_k7_1000",
clusterAlg = "hc",
innerLinkage = "ward.D2",
finalLinkage = "complete",
plot = 'pdf',
writeTable = TRUE
)
}
return(ans)
}
#' @title Array Array Intensity correlation (AAIC) and correlation boxplot to define outlier
#' @description TCGAanalyze_Preprocessing perform Array Array Intensity correlation (AAIC).
#' It defines a square symmetric matrix of spearman correlation among samples.
#' According this matrix and boxplot of correlation samples by samples it is possible
#' to find samples with low correlation that can be identified as possible outliers.
#' @param object gene expression of class RangedSummarizedExperiment from TCGAprepare
#' @param cor.cut is a threshold to filter samples according their spearman correlation in
#' samples by samples. default cor.cut is 0
#' @param filename Filename of the image file
#' @param width Image width
#' @param height Image height
#' @param datatype is a string from RangedSummarizedExperiment assay
#' @importFrom grDevices dev.list
#' @importFrom SummarizedExperiment assays
#' @export
#' @return Plot with array array intensity correlation and boxplot of correlation samples by samples
TCGAanalyze_Preprocessing <- function(
object,
cor.cut = 0,
datatype = names(assays(object))[1],
filename = NULL,
width = 1000,
height = 1000
) {
# This is a work around for raw_counts and raw_count
if(missing(object))
stop("Please set object argument")
if(!is(object,"RangedSummarizedExperiment"))
stop("Input object should be a RangedSummarizedExperiment")
if (grepl("raw_counts", datatype) & any(grepl("raw_counts", names(assays(object)))))
datatype <- names(assays(object))[grepl("raw_counts", names(assays(object)))]
if (!any(grepl(datatype, names(assays(object)))))
stop(
paste0(
datatype,
" not found in the assay list: ",
paste(names(assays(object)), collapse = ", "),
"\n Please set the correct datatype argument."
)
)
if (!(is.null(dev.list()["RStudioGD"]))) {
dev.off()
}
if (is.null(filename)) filename <- "PreprocessingOutput.png"
png(filename, width = width, height = height)
par(oma = c(10, 10, 10, 10))
ArrayIndex <- as.character(1:length(colData(object)$barcode))
pmat_new <- matrix(0, length(ArrayIndex), 4)
colnames(pmat_new) <- c("Disease", "platform", "SampleID", "Study")
rownames(pmat_new) <- as.character(colData(object)$barcode)
pmat_new <- as.data.frame(pmat_new)
pmat_new$Disease <- as.character(colData(object)$definition)
pmat_new$platform <- "platform"
pmat_new$SampleID <- as.character(colData(object)$barcode)
pmat_new$Study <- "study"
tabGroupCol <- cbind(pmat_new, Color = matrix(0, nrow(pmat_new), 1))
for (i in seq_along(unique(tabGroupCol$Disease))) {
tabGroupCol[which(tabGroupCol$Disease == tabGroupCol$Disease[i]), "Color"] <-
rainbow(length(unique(tabGroupCol$Disease)))[i]
}
pmat <- pmat_new
phenodepth <- min(ncol(pmat), 3)
order <- switch(
phenodepth + 1,
ArrayIndex,
order(pmat[, 1]),
order(pmat[, 1], pmat[, 2]),
order(pmat[, 1], pmat[, 2], pmat[, 3])
)
arraypos <- (1:length(ArrayIndex)) * (1 / (length(ArrayIndex) - 1)) - (1 / (length(ArrayIndex) - 1))
arraypos2 = seq(1:length(ArrayIndex) - 1)
for (i in 2:length(ArrayIndex)) {
arraypos2[i - 1] <- (arraypos[i] + arraypos[i - 1]) / 2
}
layout(matrix(c(1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 3, 3, 4), 4, 4, byrow = TRUE))
c <- cor(assay(object, datatype)[, order], method = "spearman")
image(c,
xaxt = "n",
yaxt = "n",
#xlab = "Array Samples",
#ylab = "Array Samples",
main = "Array-Array Intensity Correlation after RMA"
)
for (i in 1:length(names(table(tabGroupCol$Color)))) {
currentCol <- names(table(tabGroupCol$Color))[i]
pos.col <- arraypos[which(tabGroupCol$Color == currentCol)]
lab.col <- colnames(c)[which(tabGroupCol$Color == currentCol)]
#axis(1, labels = lab.col , at = pos.col, col = currentCol,lwd = 6,las = 2)
axis(
2,
labels = lab.col ,
at = pos.col,
col = currentCol,
lwd = 6,
las = 2
)
}
m <- matrix(pretty(c, 10), nrow = 1, ncol = length(pretty(c, 10)))
image(
m,
xaxt = "n",
yaxt = "n",
ylab = "Correlation Coefficient"
)
axis(2,
labels = as.list(pretty(c, 10)),
at = seq(0, 1, by = (1 / (
length(pretty(c, 10)) - 1
))))
abline(
h = seq(
(1 / ( length(pretty(c, 10)) - 1)) / 2,
1 - (1 / ( length(pretty(c, 10)) - 1)),
by = (1 / ( length(pretty(c, 10)) - 1))
)
)
box()
boxplot(
c,
outline = FALSE,
las = 2,
lwd = 6,
# names = NULL,
col = tabGroupCol$Color,
main = "Boxplot of correlation samples by samples after normalization"
)
dev.off()
samplesCor <- rowMeans(c)
message("Number of outliers: ", sum(samplesCor < cor.cut))
objectWO <- assay(object, datatype)[, names(samplesCor)[samplesCor > cor.cut]]
return(objectWO)
}
#' @title survival analysis (SA) univariate with Kaplan-Meier (KM) method.
#' @description TCGAanalyze_SurvivalKM perform an univariate Kaplan-Meier (KM) survival analysis (SA).
#' It performed Kaplan-Meier survival univariate using complete follow up with all days
#' taking one gene a time from Genelist of gene symbols.
#' For each gene according its level of mean expression in cancer samples,
#' defining two thresholds for quantile
#' expression of that gene in all samples (default ThreshTop=0.67,ThreshDown=0.33) it is possible
#' to define a threshold of intensity of gene expression to divide the samples in 3 groups
#' (High, intermediate, low).
#' TCGAanalyze_SurvivalKM performs SA between High and low groups using following functions
#' from survival package
#' \enumerate{
#' \item survival::Surv
#' \item survival::survdiff
#' \item survival::survfit
#' }
#' @param clinical_patient is a data.frame using function 'clinic' with information
#' related to barcode / samples such as bcr_patient_barcode, days_to_death ,
#' days_to_last_follow_up , vital_status, etc
#' @param dataGE is a matrix of Gene expression (genes in rows, samples in cols) from TCGAprepare
#' @param Genelist is a list of gene symbols where perform survival KM.
#' @param Survresult is a parameter (default = FALSE) if is TRUE will show KM plot and results.
#' @param ThreshTop is a quantile threshold to identify samples with high expression of a gene
#' @param ThreshDown is a quantile threshold to identify samples with low expression of a gene
#' @param p.cut p.values threshold. Default: 0.05
#' @param group1 a string containing the barcode list of the samples in in control group
#' @param group2 a string containing the barcode list of the samples in in disease group
#' @export
#' @return table with survival genes pvalues from KM.
#' @examples
#' # Selecting only 20 genes for example
#' dataBRCAcomplete <- log2(dataBRCA[1:20,] + 1)
#'
#' # clinical_patient_Cancer <- GDCquery_clinic("TCGA-BRCA","clinical")
#' clinical_patient_Cancer <- data.frame(
#' bcr_patient_barcode = substr(colnames(dataBRCAcomplete),1,12),
#' vital_status = c(rep("alive",3),"dead",rep("alive",2),rep(c("dead","alive"),2)),
#' days_to_death = c(NA,NA,NA,172,NA,NA,3472,NA,786,NA),
#' days_to_last_follow_up = c(3011,965,718,NA,1914,423,NA,5,656,1417)
#' )
#'
#' group1 <- TCGAquery_SampleTypes(colnames(dataBRCAcomplete), typesample = c("NT"))
#' group2 <- TCGAquery_SampleTypes(colnames(dataBRCAcomplete), typesample = c("TP"))
#'
#' tabSurvKM <- TCGAanalyze_SurvivalKM(clinical_patient_Cancer,
#' dataBRCAcomplete,
#' Genelist = rownames(dataBRCAcomplete),
#' Survresult = FALSE,
#' p.cut = 0.4,
#' ThreshTop = 0.67,
#' ThreshDown = 0.33,
#' group1 = group1, # Control group
#' group2 = group2) # Disease group
#'
#' # If the groups are not specified group1 == group2 and all samples are used
#' \dontrun{
#' tabSurvKM <- TCGAanalyze_SurvivalKM(clinical_patient_Cancer,
#' dataBRCAcomplete,
#' Genelist = rownames(dataBRCAcomplete),
#' Survresult = TRUE,
#' p.cut = 0.2,
#' ThreshTop = 0.67,
#' ThreshDown = 0.33)
#' }
TCGAanalyze_SurvivalKM <- function(
clinical_patient,
dataGE,
Genelist,
Survresult = FALSE,
ThreshTop = 0.67,
ThreshDown = 0.33,
p.cut = 0.05,
group1,
group2
) {
check_package("survival")
# Check which genes we really have in the matrix
Genelist <- intersect(rownames(dataGE), Genelist)
# Split gene expression matrix btw the groups
dataCancer <- dataGE[Genelist, group2, drop = FALSE]
dataNormal <- dataGE[Genelist, group1, drop = FALSE]
colnames(dataCancer) <- substr(colnames(dataCancer), 1, 12)
cfu <- clinical_patient[clinical_patient[, "bcr_patient_barcode"] %in% substr(colnames(dataCancer), 1, 12), ]
if ("days_to_last_followup" %in% colnames(cfu))
colnames(cfu)[grep("days_to_last_followup", colnames(cfu))] <-
"days_to_last_follow_up"
cfu <- as.data.frame(subset(
cfu,
select = c(
"bcr_patient_barcode",
"days_to_death",
"days_to_last_follow_up",
"vital_status"
)
))
# Set alive death to inf
if (length(grep("alive", cfu$vital_status, ignore.case = TRUE)) > 0)
cfu[grep("alive", cfu$vital_status, ignore.case = TRUE), "days_to_death"] <- "-Inf"
# Set dead follow up to inf
if (length(grep("dead", cfu$vital_status, ignore.case = TRUE)) > 0)
cfu[grep("dead", cfu$vital_status, ignore.case = TRUE), "days_to_last_follow_up"] <- "-Inf"
cfu <- cfu[!(is.na(cfu[, "days_to_last_follow_up"])), ]
cfu <- cfu[!(is.na(cfu[, "days_to_death"])), ]
followUpLevel <- FALSE
cfu$days_to_death <- as.numeric(as.character(cfu$days_to_death))
cfu$days_to_last_follow_up <- as.numeric(as.character(cfu$days_to_last_follow_up))
rownames(cfu) <- cfu[, "bcr_patient_barcode"] #mod1
cfu <- cfu[!(is.na(cfu[, "days_to_last_follow_up"])), ]
cfu <- cfu[!(is.na(cfu[, "days_to_death"])), ]
cfu_complete <- cfu
ngenes <- nrow(as.matrix(rownames(dataNormal)))
# Evaluate each gene
tabSurv_Matrix <- plyr::adply(.data =1:length(rownames(dataNormal)),.margins = 1,.fun = function(i){
mRNAselected <- as.matrix(rownames(dataNormal))[i]
mRNAselected_values <- dataCancer[rownames(dataCancer) == mRNAselected, ]
mRNAselected_values_normal <- dataNormal[rownames(dataNormal) == mRNAselected, ]
if (all(mRNAselected_values == 0)) return(NULL) # All genes are 0
tabSurv_Matrix <- data.frame("mRNA" = mRNAselected)
# Get Thresh values for cancer expression
mRNAselected_values_ordered <- sort(mRNAselected_values, decreasing = TRUE)
mRNAselected_values_ordered_top <- as.numeric(quantile(as.numeric(mRNAselected_values_ordered), ThreshTop)[1])
mRNAselected_values_ordered_down <- as.numeric(quantile(as.numeric(mRNAselected_values_ordered), ThreshDown)[1])
mRNAselected_values_newvector <- mRNAselected_values
if (!is.na(mRNAselected_values_ordered_top)) {
# How many samples do we have
numberOfSamples <- length(mRNAselected_values_ordered)
# High group (above ThreshTop)
lastelementTOP <- max(which(
mRNAselected_values_ordered > mRNAselected_values_ordered_top
))
# Low group (below ThreshDown)
firstelementDOWN <- min(
which(
mRNAselected_values_ordered <= mRNAselected_values_ordered_down
)
)
samples_top_mRNA_selected <- names(mRNAselected_values_ordered[1:lastelementTOP])
samples_down_mRNA_selected <- names(mRNAselected_values_ordered[firstelementDOWN:numberOfSamples])
# Which samples are in the intermediate group (above ThreshLow and below ThreshTop)
samples_UNCHANGED_mRNA_selected <- names(mRNAselected_values_newvector[which((mRNAselected_values_newvector) > mRNAselected_values_ordered_down &
mRNAselected_values_newvector < mRNAselected_values_ordered_top
)])
cfu_onlyTOP <- cfu_complete[cfu_complete[, "bcr_patient_barcode"] %in% samples_top_mRNA_selected, ]
cfu_onlyDOWN <- cfu_complete[cfu_complete[, "bcr_patient_barcode"] %in% samples_down_mRNA_selected, ]
cfu_onlyUNCHANGED <- cfu_complete[cfu_complete[, "bcr_patient_barcode"] %in% samples_UNCHANGED_mRNA_selected, ]
cfu_ordered <- NULL
cfu_ordered <- rbind(cfu_onlyTOP, cfu_onlyDOWN)
cfu <- cfu_ordered
ttime <- as.numeric(cfu[, "days_to_death"])
sum(status <- ttime > 0) # morti
deads_complete <- sum(status <- ttime > 0)
ttime_only_top <- cfu_onlyTOP[, "days_to_death"]
deads_top <- sum(ttime_only_top > 0)
if (dim(cfu_onlyDOWN)[1] >= 1) {
ttime_only_down <- cfu_onlyDOWN[, "days_to_death"]
deads_down <- sum(ttime_only_down > 0)
} else {
deads_down <- 0
}
tabSurv_Matrix[1, "Cancer Deaths"] <- deads_complete
tabSurv_Matrix[1, "Cancer Deaths with Top"] <- deads_top
tabSurv_Matrix[1, "Cancer Deaths with Down"] <- deads_down
tabSurv_Matrix[1, "Mean Normal"] <- mean(as.numeric(mRNAselected_values_normal))
dataCancer_onlyTop_sample <- dataCancer[, samples_top_mRNA_selected, drop = FALSE]
dataCancer_onlyTop_sample_mRNASelected <- dataCancer_onlyTop_sample[rownames(dataCancer_onlyTop_sample) == mRNAselected, ]
dataCancer_onlyDown_sample <- dataCancer[, samples_down_mRNA_selected, drop = FALSE]
dataCancer_onlyDown_sample_mRNASelected <- dataCancer_onlyDown_sample[rownames(dataCancer_onlyDown_sample) == mRNAselected, ]
tabSurv_Matrix[1, "Mean Tumor Top"] <- mean(as.numeric(dataCancer_onlyTop_sample_mRNASelected))
tabSurv_Matrix[1, "Mean Tumor Down"] <- mean(as.numeric(dataCancer_onlyDown_sample_mRNASelected))
ttime[!status] <- as.numeric(cfu[!status, "days_to_last_follow_up"])
ttime[which(ttime == -Inf)] <- 0
ttime <- survival::Surv(ttime, status)
rownames(ttime) <- rownames(cfu)
legendHigh <- paste(mRNAselected, "High")
legendLow <- paste(mRNAselected, "Low")
tabSurv_pvalue <- tryCatch({
tabSurv <- survival::survdiff(ttime ~ c(rep(
"top", nrow(cfu_onlyTOP)
), rep(
"down", nrow(cfu_onlyDOWN)
)))
tabSurv_chis <- unlist(tabSurv)$chisq
tabSurv_pvalue <-
as.numeric(1 - pchisq(abs(tabSurv$chisq), df = 1))
}, error = function(e) {
return(Inf)
})
tabSurv_Matrix[1, "pvalue"] <- tabSurv_pvalue
if (Survresult == TRUE) {
titlePlot <- paste("Kaplan-Meier Survival analysis, pvalue = ",tabSurv_pvalue)
plot(
survival::survfit(ttime ~ c(
rep("low", nrow(cfu_onlyTOP)), rep("high", nrow(cfu_onlyDOWN))
)),
col = c("green", "red"),
main = titlePlot,
xlab = "Days",
ylab = "Survival"
)
legend(
100,
1,
legend = c(legendLow, legendHigh),
col = c("green", "red"),
text.col = c("green", "red"),
pch = 15
)
print(tabSurv)
}
} #end if
tabSurv_Matrix
},.progress = "time") #end for
tabSurv_Matrix[tabSurv_Matrix == "-Inf"] <- 0
tabSurvKM <- tabSurv_Matrix
# Filtering by selected pvalue < 0.01
tabSurvKM <- tabSurvKM[tabSurvKM$mRNA != 0, ]
tabSurvKM <- tabSurvKM[tabSurvKM$pvalue < p.cut, ]
tabSurvKM <- tabSurvKM[!duplicated(tabSurvKM$mRNA), ]
rownames(tabSurvKM) <- tabSurvKM$mRNA
tabSurvKM <- tabSurvKM[, -1]
tabSurvKM <- tabSurvKM[order(tabSurvKM$pvalue, decreasing = FALSE), ]
colnames(tabSurvKM) <- gsub("Cancer", "Group2", colnames(tabSurvKM))
colnames(tabSurvKM) <- gsub("Tumor", "Group2", colnames(tabSurvKM))
colnames(tabSurvKM) <- gsub("Normal", "Group1", colnames(tabSurvKM))
return(tabSurvKM)
}
#' @title Filtering mRNA transcripts and miRNA selecting a threshold.
#' @description
#' TCGAanalyze_Filtering allows user to filter mRNA transcripts and miRNA,
#' samples, higher than the threshold defined quantile mean across all samples.
#' @param tabDF is a dataframe or numeric matrix, each row represents a gene,
#' each column represents a sample come from TCGAPrepare
#' @param method is method of filtering such as 'quantile', 'varFilter', 'filter1', 'filter2'
#' @param qnt.cut is threshold selected as mean for filtering
#' @param var.func is function used as the per-feature filtering statistic.
#' See genefilter documentation
#' @param var.cutoff is a numeric value. See genefilter documentation
#' @param eta is a parameter for filter1. default eta = 0.05.
#' @param foldChange is a parameter for filter2. default foldChange = 1.
#' @export
#' @return A filtered dataframe or numeric matrix where each row represents a gene,
#' each column represents a sample
#' @examples
#' dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)
#' dataNorm <- TCGAanalyze_Normalization(tabDF = dataBRCA,
#' geneInfo = geneInfo,
#' method = "geneLength")
#' dataFilt <- TCGAanalyze_Filtering(tabDF = dataNorm, method = "quantile", qnt.cut = 0.25)
TCGAanalyze_Filtering <- function(
tabDF,
method,
qnt.cut = 0.25,
var.func = IQR,
var.cutoff = 0.75,
eta = 0.05,
foldChange = 1
) {
if (method == "quantile") {
GeneThresh <- as.numeric(quantile(rowMeans(tabDF,na.rm = TRUE), qnt.cut))
geneFiltered <- names(which(rowMeans(tabDF) > GeneThresh))
tabDF_Filt <- tabDF[geneFiltered,]
}
if (method == "varFilter") {
check_package("genefilter")
tabDF_Filt <- genefilter::varFilter(
tabDF,
var.func = IQR,
var.cutoff = 0.75,
filterByQuantile = TRUE
)
}
if (method == "filter1") {
normCounts <- tabDF
geData <- t(log(1 + normCounts, 2))
filter <-
apply(geData, 2, function(x)
sum(quantile(x, probs = c(1 - eta, eta)) * c(1, -1)))
tabDF_Filt <- geData[, which(filter > foldChange)]
}
if (method == "filter2") {
geData <- tabDF
filter <-
apply(geData, 2, function(x)
prod(quantile(x, probs = c(1 - eta, eta)) - 10) < 0)
tabDF_Filt <- geData[, which(filter)]
}
return(tabDF_Filt)
}
#' @title normalization mRNA transcripts and miRNA using EDASeq package.
#' @description
#' TCGAanalyze_Normalization allows user to normalize mRNA transcripts and miRNA,
#' using EDASeq package.
#'
#' Normalization for RNA-Seq Numerical and graphical
#' summaries of RNA-Seq read data. Within-lane normalization procedures
#' to adjust for GC-content effect (or other gene-level effects) on read counts:
#' loess robust local regression, global-scaling, and full-quantile normalization
#' (Risso et al., 2011). Between-lane normalization procedures to adjust for
#' distributional differences between lanes (e.g., sequencing depth):
#' global-scaling and full-quantile normalization (Bullard et al., 2010).
#'
#' For istance returns all mRNA or miRNA with mean across all
#' samples, higher than the threshold defined quantile mean across all samples.
#'
#' TCGAanalyze_Normalization performs normalization using following functions
#' from EDASeq
#' \enumerate{
#' \item EDASeq::newSeqExpressionSet
#' \item EDASeq::withinLaneNormalization
#' \item EDASeq::betweenLaneNormalization
#' \item EDASeq::counts
#' }
#' @param tabDF Rnaseq numeric matrix, each row represents a gene,
#' each column represents a sample
#' @param geneInfo Information matrix of 20531 genes about geneLength and gcContent.
#' Two objects are provided: TCGAbiolinks::geneInfoHT,TCGAbiolinks::geneInfo
#' @param method is method of normalization such as 'gcContent' or 'geneLength'
#' @export
#' @return Rnaseq matrix normalized with counts slot holds the count data as a matrix
#' of non-negative integer count values, one row for each observational unit (gene or the like),
#' and one column for each sample.
#' @examples
#' dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)
TCGAanalyze_Normalization <- function(
tabDF,
geneInfo,
method = "geneLength"
) {
check_package("EDASeq")
# Check if we have a SE, we need a gene expression matrix
if (is(tabDF, "SummarizedExperiment")) tabDF <- assay(tabDF)
geneInfo <- geneInfo[!is.na(geneInfo[, 1]), ]
geneInfo <- as.data.frame(geneInfo)
geneInfo$geneLength <- as.numeric(as.character(geneInfo$geneLength))
geneInfo$gcContent <- as.numeric(as.character(geneInfo$gcContent))
if(any(grepl("\\|",rownames(tabDF)))){
tmp <- as.character(rownames(tabDF))
geneNames <- stringr::str_split(tmp, "\\|",simplify = T)
tmp <- which(geneNames[, 1] == "?")
geneNames[tmp, 1] <- geneNames[tmp, 2]
tmp <- table(geneNames[, 1])
tmp <- which(geneNames[, 1] %in% names(tmp[which(tmp > 1)]))
geneNames[tmp, 1] <- paste(geneNames[tmp, 1], geneNames[tmp, 2], sep = ".")
tmp <- table(geneNames[, 1])
rownames(tabDF) <- geneNames[, 1]
} else if(any(grepl("ENSG",rownames(tabDF)))){
rownames(tabDF) <- gsub("\\.[0-9]*","",rownames(tabDF))
}
if (method == "gcContent") {
rawCounts <- tabDF
commonGenes <- intersect(rownames(geneInfo), rownames(rawCounts))
geneInfo <- geneInfo[commonGenes, ]
rawCounts <- rawCounts[commonGenes, ]
timeEstimated <- format(ncol(tabDF) * nrow(tabDF) / 80000, digits = 2)
message(
messageEstimation <- paste(
"I Need about ",
timeEstimated,
"seconds for this Complete Normalization Upper Quantile",
" [Processing 80k elements /s] "
)
)
ffData <- as.data.frame(geneInfo)
rawCounts <- floor(rawCounts)
message("Step 1 of 4: newSeqExpressionSet ...")
tmp <- EDASeq::newSeqExpressionSet(as.matrix(rawCounts), featureData = ffData)
#fData(tmp)[, "gcContent"] <- as.numeric(geneInfo[, "gcContent"])
message("Step 2 of 4: withinLaneNormalization ...")
tmp <- EDASeq::withinLaneNormalization(
tmp, "gcContent",
which = "upper",
offset = TRUE
)
message("Step 3 of 4: betweenLaneNormalization ...")
if(any(is.na(EDASeq::normCounts(tmp)))) {
tmp <- tmp[rowSums(is.na(EDASeq::normCounts(tmp))) == 0,]
}
tmp <- EDASeq::betweenLaneNormalization(
tmp,
which = "upper",
offset = TRUE
)
normCounts <- log(rawCounts[rownames(tmp),] + .1) + EDASeq::offst(tmp)
normCounts <- floor(exp(normCounts) - .1)
message("Step 4 of 4: .quantileNormalization ...")
tmp <- t(.quantileNormalization(t(normCounts)))
tabDF_norm <- floor(tmp)
}
if (method == "geneLength") {
tabDF <- tabDF[!duplicated(rownames(tabDF)), !duplicated(colnames(tabDF))]
tabDF <- tabDF[rownames(tabDF) %in% rownames(geneInfo), ]
#tabDF <- tabDF[rowMeans(tabDF) > 1,]
tabDF <- tabDF[which(rowSums(tabDF == 0) < ncol(tabDF)),]
tabDF <- as.matrix(tabDF)
geneInfo <- geneInfo[rownames(geneInfo) %in% rownames(tabDF),]
geneInfo <- geneInfo[!duplicated(rownames(geneInfo)),]
toKeep <- which(geneInfo[, "geneLength"] != 0)
geneInfo <- geneInfo[toKeep,]
tabDF <- tabDF[toKeep,]
geneInfo <- as.data.frame(geneInfo)
tabDF <- round(tabDF)
commonGenes <- intersect(rownames(tabDF), rownames(geneInfo))
tabDF <- tabDF[commonGenes, ]
geneInfo <- geneInfo[commonGenes, ]
timeEstimated <- format(ncol(tabDF) * nrow(tabDF) / 80000, digits = 2)
message(
messageEstimation <- paste(
"I Need about ",
timeEstimated,
"seconds for this Complete Normalization Upper Quantile",
" [Processing 80k elements /s] "
)
)
message("Step 1 of 4: newSeqExpressionSet ...")
tabDF_norm <- EDASeq::newSeqExpressionSet(
tabDF,
featureData = geneInfo
)
message("Step 2 of 4: withinLaneNormalization ...")
tabDF_norm <- EDASeq::withinLaneNormalization(
tabDF_norm,
"geneLength",
which = "upper",
offset = FALSE
)
message("Step 3 of 4: betweenLaneNormalization ...")
if(any(is.na(EDASeq::normCounts(tabDF_norm)))) {
tabDF_norm <- tabDF_norm[rowSums(is.na(EDASeq::normCounts(tabDF_norm))) == 0,]
}
tabDF_norm <- EDASeq::betweenLaneNormalization(
tabDF_norm,
which = "upper",
offset = FALSE
)
message("Step 4 of 4: exprs ...")
tabDF_norm <- EDASeq::counts(tabDF_norm)
}
# In case NA's were produced to all rows
if(any(rowSums(is.na(tabDF_norm)) == ncol(tabDF_norm))){
tabDF_norm <- tabDF_norm[rowSums(is.na(tabDF_norm)) != ncol(tabDF_norm),]
}
return(tabDF_norm)
}
#' @title Differential expression analysis (DEA) using edgeR or limma package.
#' @description
#' TCGAanalyze_DEA allows user to perform Differentially expression analysis (DEA),
#' using edgeR package or limma to identify differentially expressed genes (DEGs).
#' It is possible to do a two-class analysis.
#'
#' TCGAanalyze_DEA performs DEA using following functions from edgeR:
#' \enumerate{
#' \item edgeR::DGEList converts the count matrix into an edgeR object.
#' \item edgeR::estimateCommonDisp each gene gets assigned the same dispersion estimate.
#' \item edgeR::exactTest performs pair-wise tests for differential expression between two groups.
#' \item edgeR::topTags takes the output from exactTest(), adjusts the raw p-values using the
#' False Discovery Rate (FDR) correction, and returns the top differentially expressed genes.
#' }
#' TCGAanalyze_DEA performs DEA using following functions from limma:
#' \enumerate{
#' \item limma::makeContrasts construct matrix of custom contrasts.
#' \item limma::lmFit Fit linear model for each gene given a series of arrays.
#' \item limma::contrasts.fit Given a linear model fit to microarray data, compute estimated coefficients and standard errors for a given set of contrasts.
#' \item limma::eBayes Given a microarray linear model fit, compute moderated t-statistics, moderated F-statistic, and log-odds of differential expression by empirical Bayes moderation of the standard errors towards a common value.
#' \item limma::toptable Extract a table of the top-ranked genes from a linear model fit.
#' }
#' @param mat1 numeric matrix, each row represents a gene,
#' each column represents a sample with Cond1type
#' @param mat2 numeric matrix, each row represents a gene,
#' each column represents a sample with Cond2type
#' @param metadata Add metadata
#' @param Cond1type a string containing the class label of the samples in mat1
#' (e.g., control group)
#' @param Cond2type a string containing the class label of the samples in mat2
#' (e.g., case group)
#' @param pipeline a string to specify which package to use ("limma" or "edgeR")
#' @param method is 'glmLRT' (1) or 'exactTest' (2) used for edgeR
#' (1) Fit a negative binomial generalized log-linear model to
#' the read counts for each gene
#' (2) Compute genewise exact tests for differences in the means between
#' two groups of negative-binomially distributed counts.
#' @param fdr.cut is a threshold to filter DEGs according their p-value corrected
#' @param logFC.cut is a threshold to filter DEGs according their logFC
#' @param batch.factors a vector containing strings to specify options for batch correction. Options are "Plate", "TSS", "Year", "Portion", "Center", and "Patients"
#' @param ClinicalDF a dataframe returned by GDCquery_clinic() to be used to extract year data
#' @param paired boolean to account for paired or non-paired samples. Set to TRUE for paired case
#' @param log.trans boolean to perform log cpm transformation. Set to TRUE for log transformation
#' @param trend boolean to perform limma-trend pipeline. Set to TRUE to go through limma-trend
#' @param MAT matrix containing expression set as all samples in columns and genes as rows. Do not provide if mat1 and mat2 are used
#' @param contrast.formula string input to determine coefficients and to design contrasts in a customized way
#' @param Condtypes vector of grouping for samples in MAT
#' @param voom boolean to perform voom transformation for limma-voom pipeline. Set to TRUE for voom transformation
#' @export
#' @examples
#' dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)
#' dataFilt <- TCGAanalyze_Filtering(tabDF = dataBRCA, method = "quantile", qnt.cut = 0.25)
#' samplesNT <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
#' samplesTP <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))
#' dataDEGs <- TCGAanalyze_DEA(
#' mat1 = dataFilt[,samplesNT],
#' mat2 = dataFilt[,samplesTP],
#' Cond1type = "Normal",
#' Cond2type = "Tumor"
#' )
#'
#' @return table with DEGs containing for each gene logFC, logCPM, pValue,and FDR, also for each contrast
TCGAanalyze_DEA <- function (
mat1,
mat2,
metadata = TRUE,
Cond1type,
Cond2type,
pipeline = "edgeR",
method = "exactTest",
fdr.cut = 1,
logFC.cut = 0,
batch.factors = NULL,
ClinicalDF = data.frame(),
paired = FALSE,
log.trans = FALSE,
voom = FALSE,
trend = FALSE,
MAT = data.frame(),
contrast.formula = "",
Condtypes = c()
){
if(pipeline == "limma") check_package("limma")
if(pipeline == "edgeR") check_package("edgeR")
table.code <- c(
"TP",
"TR",
"TB",
"TRBM",
"TAP",
"TM",
"TAM",
"THOC",
"TBM",
"NB",
"NT",
"NBC",
"NEBV",
"NBM",
"CELLC",
"TRB",
"CELL",
"XP",
"XCL"
)
names(table.code) <- c(
"01",
"02",
"03",
"04",
"05",
"06",
"07",
"08",
"09",
"10",
"11",
"12",
"13",
"14",
"20",
"40",
"50",
"60",
"61"
)
if (nrow(MAT) == 0) {
TOC <- cbind(mat1, mat2)
Cond1num <- ncol(mat1)
Cond2num <- ncol(mat2)
} else {
TOC <- MAT
}
if (metadata == TRUE & all(grepl("TCGA",colnames(TOC)))){
my_IDs <- get_IDs(TOC)
Plate <- factor(my_IDs$plate)
Condition <- factor(my_IDs$condition)
TSS <- factor(my_IDs$tss)
Portion <- factor(my_IDs$portion)
Center <- factor(my_IDs$center)
Patients <- factor(my_IDs$patient)
}
# this makes non-sense for non-TCGA data
if (paired == TRUE) {
matched.query <- TCGAquery_MatchedCoupledSampleTypes(
my_IDs$barcode,
table.code[unique(my_IDs$sample)]
)
my_IDs <- subset(my_IDs, barcode == matched.query)
TOC <- TOC[, (names(TOC) %in% matched.query)]
}
if (nrow(ClinicalDF) > 0) {
names(ClinicalDF)[names(ClinicalDF) == "bcr_patient_barcode"] <- "patient"
ClinicalDF$age_at_diag_year <- floor(clinical$age_at_diagnosis / 365)
ClinicalDF$diag_year <- ClinicalDF$age_at_diag_year + clinical$year_of_birth
diag_yearDF <- ClinicalDF[, c("patient", "diag_year")]
my_IDs <- merge(my_IDs, ClinicalDF, by = "patient")
Year <- as.factor(my_IDs$diag_year)
}
options <- c("Plate", "TSS", "Year", "Portion", "Center", "Patients")
if (length(batch.factors) == 0) {
message("Batch correction skipped since no factors provided")
} else {
for (o in batch.factors) {
if (o %in% options == FALSE)
stop(paste0(o, " is not a valid batch correction factor"))
if (o == "Year" & nrow(ClinicalDF) == 0)
stop(
"batch correction using diagnosis year needs clinical info. Provide Clinical Data in arguments"
)
}
}
additiveformula <- paste(batch.factors, collapse = "+")
message("----------------------- DEA -------------------------------")
if (nrow(MAT) == 0) {
message("o ",Cond1num," samples in Cond1type ",Cond1type)
message("o ",Cond2num," samples in Cond2type ",Cond2type)
message("o ", nrow(TOC), " features as miRNA or genes ")
} else {
message("o ", nrow(TOC), " features as miRNA or genes ")
}
message("This may take some minutes...")
colnames(TOC) <- paste0("s", 1:ncol(TOC))
if (length(Condtypes) > 0) {
tumorType <- factor(x = Condtypes, levels = unique(Condtypes))
} else {
tumorType <- factor(
x = rep(c(Cond1type, Cond2type), c(Cond1num, Cond2num)),
levels = c(Cond1type, Cond2type)
)
}
if (length(batch.factors) == 0 & length(Condtypes) > 0) {
if (pipeline == "edgeR")
design <- model.matrix( ~ tumorType)
else
design <- model.matrix( ~ 0 + tumorType)
} else if (length(batch.factors) == 0 & length(Condtypes) == 0) {
if (pipeline == "edgeR")
design <- model.matrix( ~ tumorType)
else
design <- model.matrix( ~ 0 + tumorType)
} else if (length(batch.factors) > 0 & length(Condtypes) == 0) {
if (pipeline == "edgeR")
formula <- paste0("~tumorType+", additiveformula)
else
formula <- paste0("~0+tumorType+", additiveformula)
design <- model.matrix(eval(parse(text = formula)))
} else if (length(batch.factors) > 0 & length(Condtypes) > 0) {
if (pipeline == "edgeR") {
formula <- paste0("~tumorType+", additiveformula)
if (length(Condtypes) > 2)
formula <- paste0("~0+tumorType+", additiveformula)
} else {
formula <- paste0("~0+tumorType+", additiveformula)
}
design <- model.matrix(eval(parse(text = formula)))
}
if (pipeline == "edgeR") {
if (method == "exactTest") {
DGE <- edgeR::DGEList(TOC, group = rep(c(Cond1type, Cond2type), c(Cond1num, Cond2num)))
disp <- edgeR::estimateCommonDisp(DGE)
tested <- edgeR::exactTest(disp, pair = c(Cond1type, Cond2type))
logFC_table <- tested$table
tableDEA <- edgeR::topTags(tested, n = nrow(tested$table))$table
tableDEA <- tableDEA[tableDEA$FDR <= fdr.cut,]
tableDEA <- tableDEA[abs(tableDEA$logFC) >= logFC.cut,]
}
else if (method == "glmLRT") {
if (length(unique(tumorType)) == 2) {
aDGEList <- edgeR::DGEList(counts = TOC, group = tumorType)
aDGEList <- edgeR::estimateGLMCommonDisp(aDGEList, design)
aDGEList <- edgeR::estimateGLMTagwiseDisp(aDGEList, design)
aGlmFit <- edgeR::glmFit(
aDGEList,
design,
dispersion = aDGEList$tagwise.dispersion,
prior.count.total = 0
)
aGlmLRT <- edgeR::glmLRT(aGlmFit, coef = 2)
tableDEA <- cbind(aGlmLRT$table, FDR = p.adjust(aGlmLRT$table$PValue, "fdr"))
tableDEA <- tableDEA[tableDEA$FDR < fdr.cut, ]
tableDEA <- tableDEA[abs(tableDEA$logFC) > logFC.cut, ]
if (all(grepl("ENSG", rownames(tableDEA)))){
tableDEA <- cbind(tableDEA, map.ensg(genes = rownames(tableDEA))[, c("gene_name","gene_type")])
}
} else if (length(unique(tumorType)) > 2) {
aDGEList <- edgeR::DGEList(counts = TOC, group = tumorType)
colnames(design)[1:length(levels(tumorType))] <- levels(tumorType)
prestr = "makeContrasts("
poststr = ",levels=design)"
commandstr = paste(prestr, contrast.formula, poststr, sep = "")
commandstr = paste0("limma::", commandstr)
cont.matrix <- eval(parse(text = commandstr))
aDGEList <- edgeR::estimateGLMCommonDisp(aDGEList, design)
aDGEList <- edgeR::estimateGLMTagwiseDisp(aDGEList, design)
aGlmFit <- edgeR::glmFit(
aDGEList,
design,
dispersion = aDGEList$tagwise.dispersion,
prior.count.total = 0
)
tableDEA <- list()
for (mycoef in colnames(cont.matrix)) {
message(paste0("DEA for", " :", mycoef))
aGlmLRT <- edgeR::glmLRT(aGlmFit, contrast = cont.matrix[, mycoef])
tt <- aGlmLRT$table
tt <- cbind(tt, FDR = p.adjust(aGlmLRT$table$PValue,"fdr"))
tt <- tt[(tt$FDR < fdr.cut & abs(as.numeric(tt$logFC)) > logFC.cut),]
tableDEA[[as.character(mycoef)]] <- tt
if (all(grepl("ENSG", rownames(tableDEA[[as.character(mycoef)]]))))
tableDEA[[as.character(mycoef)]] <-
cbind(tableDEA[[as.character(mycoef)]],
map.ensg(genes = rownames(tableDEA[[as.character(mycoef)]]))[,2:3])
}
}
} else {
stop(
paste0(
method,
" is not a valid DEA method option. Choose 'exactTest' or 'glmLRT' "
)
)
}
} else if (pipeline == "limma") {
if (log.trans == TRUE){
logCPM <- edgeR::cpm(TOC, log = TRUE, prior.count = 3)
} else {
logCPM <- TOC
}
if (voom == TRUE) {
message("Voom Transformation...")
logCPM <- limma::voom(logCPM, design)
}
if (length(unique(tumorType)) == 2) {
colnames(design)[1:2] <- c(Cond1type, Cond2type)
contr <- paste0(Cond2type, "-", Cond1type)
cont.matrix <- limma::makeContrasts(contrasts = contr, levels = design)
fit <- limma::lmFit(logCPM, design)
fit <- limma::contrasts.fit(fit, cont.matrix)
if (trend == TRUE) {
fit <- limma::eBayes(fit, trend = TRUE)
} else {
fit <- limma::eBayes(fit, trend = FALSE)
}
tableDEA <- limma::topTable(
fit,
coef = 1,
adjust.method = "fdr",
number = nrow(TOC)
)
limma::volcanoplot(fit, highlight = 10)
index <- which(tableDEA[, 4] < fdr.cut)
tableDEA <- tableDEA[index,]
neg_logFC.cut <- -1 * logFC.cut
index <- which(abs(as.numeric(tableDEA$logFC)) > logFC.cut)
tableDEA <- tableDEA[index,]
}
else if (length(unique(tumorType)) > 2) {
DGE <- edgeR::DGEList(TOC, group = tumorType)
colnames(design)[1:length(levels(tumorType))] <- levels(tumorType)
prestr = "makeContrasts("
poststr = ",levels=colnames(design))"
commandstr = paste(prestr, contrast.formula, poststr, sep = "")
commandstr = paste0("limma::", commandstr)
cont.matrix <- eval(parse(text = commandstr))
fit <- limma::lmFit(logCPM, design)
fit <- limma::contrasts.fit(fit, cont.matrix)
if (trend == TRUE){
fit <- limma::eBayes(fit, trend = TRUE)
} else {
fit <- limma::eBayes(fit, trend = FALSE)
}
tableDEA <- list()
for (mycoef in colnames(cont.matrix)) {
tableDEA[[as.character(mycoef)]] <- limma::topTable(
fit,
coef = mycoef,
adjust.method = "fdr",
number = nrow(MAT)
)
message(paste0("DEA for", " :", mycoef))
tempDEA <- tableDEA[[as.character(mycoef)]]
index.up <- which(tempDEA$adj.P.Val < fdr.cut & abs(as.numeric(tempDEA$logFC)) > logFC.cut)
tableDEA[[as.character(mycoef)]] <- tempDEA[index.up,]
if (all(grepl("ENSG", rownames(tableDEA[[as.character(mycoef)]]))))
tableDEA[[as.character(mycoef)]] <-
cbind(tableDEA[[as.character(mycoef)]],
map.ensg(genes = rownames(tableDEA[[as.character(mycoef)]]))[, 2:3])
}
}
} else {
stop(paste0(
pipeline,
" is not a valid pipeline option. Choose 'edgeR' or 'limma'"
))
}
message("----------------------- END DEA -------------------------------")
return(tableDEA)
}
#' @title Batch correction using ComBat and Voom transformation using limma package.
#' @description
#' TCGAbatch_correction allows user to perform a Voom correction on gene expression data and have it ready for DEA.
#' One can also use ComBat for batch correction for exploratory analysis. If batch.factor or adjustment argument is "Year"
#' please provide clinical data. If no batch factor is provided, the data will be voom corrected only
#'
#' TCGAanalyze_DEA performs DEA using following functions from sva and limma:
#' \enumerate{
#' \item limma::voom Transform RNA-Seq Data Ready for Linear Modelling.
#' \item sva::ComBat Adjust for batch effects using an empirical Bayes framework.
#' }
#' @param tabDF numeric matrix, each row represents a gene,
#' each column represents a sample
#' @param batch.factor a string containing the batch factor to use for correction.
#' Options are "Plate", "TSS", "Year", "Portion", "Center"
#' @param adjustment vector containing strings for factors to adjust for using ComBat.
#' Options are "Plate", "TSS", "Year", "Portion", "Center"
#' @param UnpublishedData if TRUE perform a batch correction after adding new data
#' @param ClinicalDF a dataframe returned by GDCquery_clinic() to be used to extract year data
#' @param AnnotationDF a dataframe with column Batch indicating different batches of the samples in the tabDF
#' @export
#' @return data frame with ComBat batch correction applied
TCGAbatch_Correction <- function (
tabDF,
batch.factor = NULL,
adjustment = NULL,
ClinicalDF = data.frame(),
UnpublishedData = FALSE,
AnnotationDF = data.frame()
){
check_package("sva")
# code for non-TCGA samples
if (UnpublishedData == TRUE) {
if(!"Batch" %in% colnames(AnnotationDF)) {
stop("AnnotationDF should have a Batch column")
} else {
batch.factor <- as.factor(AnnotationDF$Batch)
}
if(!"Condition" %in% colnames(AnnotationDF)) {
mod <- model.matrix(~as.factor(Condition),data = AnnotationDF)
} else {
mod <- NULL
}
batch_corr <- sva::ComBat(
dat = tabDF,
batch = batch.factor,
mod = mod,
par.prior = TRUE,
prior.plots = TRUE
)
}
if (UnpublishedData == FALSE) {
if (length(batch.factor) == 0 & length(adjustment) == 0)
message("batch correction will be skipped")
else if (batch.factor %in% adjustment) {
stop(paste0("Cannot adjust and correct for the same factor|"))
}
my_IDs <- get_IDs(tabDF)
if (length(batch.factor) > 0 || length(adjustment) > 0)
if ((nrow(ClinicalDF) > 0 & batch.factor == "Year") ||
("Year" %in% adjustment == TRUE & nrow(ClinicalDF) >
0)) {
names(ClinicalDF)[names(ClinicalDF) == "bcr_patient_barcode"] <-
"patient"
ClinicalDF$age_at_diag_year <-
floor(ClinicalDF$age_at_diagnosis / 365)
ClinicalDF$diag_year <-
ClinicalDF$age_at_diag_year +
ClinicalDF$year_of_birth
diag_yearDF <- ClinicalDF[, c("patient", "diag_year")]
Year <- merge(my_IDs, diag_yearDF, by = "patient")
Year <- Year$diag_year
Year <- as.factor(Year)
}
else if (nrow(ClinicalDF) == 0 & batch.factor == "Year") {
stop("Cannot extract Year data. Clinical data was not provided")
}
Plate <- as.factor(my_IDs$plate)
Condition <- as.factor(my_IDs$condition)
TSS <- as.factor(my_IDs$tss)
Portion <- as.factor(my_IDs$portion)
Sequencing.Center <- as.factor(my_IDs$center)
design.mod.combat <- model.matrix( ~ Condition)
options <- c("Plate", "TSS", "Year", "Portion", "Sequencing Center")
if (length(batch.factor) > 1)
stop("Combat can only correct for one batch variable. Provide one batch factor")
if (batch.factor %in% options == FALSE)
stop(paste0(o, " is not a valid batch correction factor"))
for (o in adjustment) {
if (o %in% options == FALSE)
stop(paste0(o, " is not a valid adjustment factor"))
}
adjustment.data <- c()
for (a in adjustment) {
if (a == "Sequencing Center")
a <- Sequencing.Center
adjustment.data <-
cbind(eval(parse(text = a)), adjustment.data)
}
if (batch.factor == "Sequencing Center")
batch.factor <- Sequencing.Center
batchCombat <- eval(parse(text = batch.factor))
if (length(adjustment) > 0) {
adjustment.formula <- paste(adjustment, collapse = "+")
adjustment.formula <- paste0("+", adjustment.formula)
adjustment.formula <- paste0("~Condition", adjustment.formula)
print(adjustment.formula)
model <- data.frame(batchCombat, row.names = colnames(tabDF))
design.mod.combat <- model.matrix(
eval(parse(text = adjustment.formula)),
data = model
)
}
print(unique(batchCombat))
batch_corr <- sva::ComBat(
dat = tabDF,
batch = batchCombat,
mod = design.mod.combat,
par.prior = TRUE,
prior.plots = TRUE
)
}
return(batch_corr)
}
##Function to take raw counts by removing rows filtered after norm and filter process###
#' @title Use raw count from the DataPrep object which genes are removed by normalization and filtering steps.
#' @description function to keep raw counts after filtering and/or normalizing.
#' @param DataPrep DataPrep object returned by TCGAanalyze_Preprocessing()
#' @param DataFilt Filtered data frame containing samples in columns and genes in rows after normalization and/or filtering steps
#' @examples
#' \dontrun{
#' dataPrep_raw <- UseRaw_afterFilter(dataPrep, dataFilt)
#' }
#' @export
#' @return Filtered return object similar to DataPrep with genes removed after normalization and filtering process.
UseRaw_afterFilter <- function(DataPrep, DataFilt) {
rownames(DataPrep) <-
lapply(rownames(DataPrep), function(x)
gsub("[[:punct:]]\\d*", "", x))
filtered.list <- setdiff(rownames(DataPrep), rownames(DataFilt))
Res <- DataPrep[!rownames(DataPrep) %in% filtered.list,]
return(Res)
}
#' @title Adding information related to DEGs genes from DEA as mean values in two conditions.
#' @description
#' TCGAanalyze_LevelTab allows user to add information related to DEGs genes from
#' Differentially expression analysis (DEA) such as mean values and in two conditions.
#' @param FC_FDR_table_mRNA Output of dataDEGs filter by abs(LogFC) >=1
#' @param typeCond1 a string containing the class label of the samples
#' in TableCond1 (e.g., control group)
#' @param typeCond2 a string containing the class label of the samples
#' in TableCond2 (e.g., case group)
#' @param TableCond1 numeric matrix, each row represents a gene, each column
#' represents a sample with Cond1type
#' @param TableCond2 numeric matrix, each row represents a gene, each column
#' represents a sample with Cond2type
#' @param typeOrder typeOrder
#' @export
#' @return table with DEGs, log Fold Change (FC), false discovery rate (FDR),
#' the gene expression level
#' for samples in Cond1type, and Cond2type, and Delta value (the difference
#' of gene expression between the two
#' conditions multiplied logFC)
#' @examples
#' dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)
#' dataFilt <- TCGAanalyze_Filtering(tabDF = dataBRCA, method = "quantile", qnt.cut = 0.25)
#' samplesNT <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
#' samplesTP <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))
#' dataDEGs <- TCGAanalyze_DEA(
#' dataFilt[,samplesNT],
#' dataFilt[,samplesTP],
#' Cond1type = "Normal",
#' Cond2type = "Tumor"
#' )
#' dataDEGsFilt <- dataDEGs[abs(dataDEGs$logFC) >= 1,]
#' dataTP <- dataFilt[,samplesTP]
#' dataTN <- dataFilt[,samplesNT]
#' dataDEGsFiltLevel <- TCGAanalyze_LevelTab(
#' FC_FDR_table_mRNA = dataDEGsFilt,
#' typeCond1 = "Tumor",
#' typeCond2 = "Normal",
#' TableCond1 = dataTP,
#' TableCond2 = dataTN
#' )
TCGAanalyze_LevelTab <- function(
FC_FDR_table_mRNA,
typeCond1,
typeCond2,
TableCond1,
TableCond2,
typeOrder = TRUE
) {
TableLevel <- data.frame(
"mRNA" = rownames(FC_FDR_table_mRNA),
"logFC" = FC_FDR_table_mRNA$logFC,
"FDR" = FC_FDR_table_mRNA$FDR,
"Delta" = FC_FDR_table_mRNA$logFC * rowMeans(TableCond1[rownames(FC_FDR_table_mRNA),],na.rm = TRUE)
)
TableLevel[[typeCond1]] <- rowMeans(TableCond1[TableLevel$mRNA,],na.rm = TRUE)
TableLevel[[typeCond2]] <- rowMeans(TableCond2[TableLevel$mRNA,],na.rm = TRUE)
TableLevel <- TableLevel[order(as.numeric(TableLevel[, "Delta"]), decreasing = typeOrder),]
rownames(TableLevel) <- TableLevel[, "mRNA"]
if (all(grepl("ENSG", rownames(TableLevel))))
TableLevel <- cbind(TableLevel, map.ensg(genes = rownames(TableLevel))[, 2:3])
return(TableLevel)
}
#' @title Enrichment analysis for Gene Ontology (GO) [BP,MF,CC] and Pathways
#' @description
#' Researchers, in order to better understand the underlying biological
#' processes, often want to retrieve a functional profile of a set of genes
#' that might have an important role. This can be done by performing an
#' enrichment analysis.
#'
#'We will perform an enrichment analysis on gene sets using the TCGAanalyze_EAcomplete
#'function. Given a set of genes that are
#'up-regulated under certain conditions, an enrichment analysis will find
#'identify classes of genes or proteins that are #'over-represented using
#'annotations for that gene set.
#' @param TFname is the name of the list of genes or TF's regulon.
#' @param RegulonList List of genes such as TF's regulon or DEGs where to find enrichment.
#' @export
#' @return Enrichment analysis GO[BP,MF,CC] and Pathways complete table enriched by genelist.
#' @examples
#' Genelist <- c("FN1","COL1A1")
#' ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor",Genelist)
#' \dontrun{
#' Genelist <- rownames(dataDEGsFiltLevel)
#' system.time(ansEA <- TCGAanalyze_EAcomplete(TFname="DEA genes Normal Vs Tumor",Genelist))
#' }
TCGAanalyze_EAcomplete <- function(TFname, RegulonList) {
# This is a verification of the input
# in case the List is like Gene|ID
# we will get only the Gene
if (all(grepl("\\|", RegulonList))) {
RegulonList <- strsplit(RegulonList, "\\|")
RegulonList <- unlist(lapply(RegulonList, function(x)
x[1]))
}
print(
paste(
"I need about ",
"1 minute to finish complete ",
"Enrichment analysis GO[BP,MF,CC] and Pathways... "
)
)
ResBP <- TCGAanalyze_EA(TFname, RegulonList, DAVID_BP_matrix,
EAGenes, GOtype = "DavidBP")
print("GO Enrichment Analysis BP completed....done")
ResMF <- TCGAanalyze_EA(TFname, RegulonList, DAVID_MF_matrix,
EAGenes, GOtype = "DavidMF")
print("GO Enrichment Analysis MF completed....done")
ResCC <- TCGAanalyze_EA(TFname, RegulonList, DAVID_CC_matrix,
EAGenes, GOtype = "DavidCC")
print("GO Enrichment Analysis CC completed....done")
ResPat <- TCGAanalyze_EA(TFname, RegulonList, listEA_pathways,
EAGenes, GOtype = "Pathway")
print("Pathway Enrichment Analysis completed....done")
ans <-
list(
ResBP = ResBP,
ResMF = ResMF,
ResCC = ResCC,
ResPat = ResPat
)
return(ans)
}
#' @title Enrichment analysis of a gene-set with GO [BP,MF,CC] and pathways.
#' @description
#' The rational behind a enrichment analysis ( gene-set, pathway etc) is to compute
#' statistics of whether the overlap between the focus list (signature) and the gene-set
#' is significant. ie the confidence that overlap between the list is not due to chance.
#' The Gene Ontology project describes genes (gene products) using terms from
#' three structured vocabularies: biological process, cellular component and molecular function.
#' The Gene Ontology Enrichment component, also referred to as the GO Terms" component, allows
#' the genes in any such "changed-gene" list to be characterized using the Gene Ontology terms
#' annotated to them. It asks, whether for any particular GO term, the fraction of genes
#' assigned to it in the "changed-gene" list is higher than expected by chance
#' (is over-represented), relative to the fraction of genes assigned to that term in the
#' reference set.
#' In statistical terms it perform the analysis tests the null hypothesis that,
#' for any particular ontology term, there is no difference in the proportion of genes
#' annotated to it in the reference list and the proportion annotated to it in the test list.
#' We adopted a Fisher Exact Test to perform the EA.
#' @param GeneName is the name of gene signatures list
#' @param TableEnrichment is a table related to annotations of gene symbols such as
#' GO[BP,MF,CC] and Pathways. It was created from DAVID gene ontology on-line.
#' @param RegulonList is a gene signature (lisf of genes) in which perform EA.
#' @param GOtype is type of gene ontology Biological process (BP), Molecular Function (MF),
#' Cellular componet (CC)
#' @param FDRThresh pvalue corrected (FDR) as threshold to selected significant
#' BP, MF,CC, or pathways. (default FDR < 0.01)
#' @param EAGenes is a table with informations about genes
#' such as ID, Gene, Description, Location and Family.
#' @param GeneSymbolsTable if it is TRUE will return a table with GeneSymbols in common GO or pathways.
# @export
#' @import stats
#' @return Table with enriched GO or pathways by selected gene signature.
#' @examples
#' \dontrun{
#' EAGenes <- get("EAGenes")
#' RegulonList <- rownames(dataDEGsFiltLevel)
#' ResBP <- TCGAanalyze_EA(GeneName="DEA genes Normal Vs Tumor",
#' RegulonList,DAVID_BP_matrix,
#' EAGenes,GOtype = "DavidBP")
#'}
TCGAanalyze_EA <- function (
GeneName,
RegulonList,
TableEnrichment,
EAGenes,
GOtype,
FDRThresh = 0.01,
GeneSymbolsTable = FALSE
) {
topPathways <- nrow(TableEnrichment)
topPathways_tab <- matrix(0, 1, topPathways)
topPathways_tab <- as.matrix(topPathways_tab)
rownames(topPathways_tab) <- GeneName
rownames(EAGenes) <- toupper(rownames(EAGenes))
EAGenes <- EAGenes[!duplicated(EAGenes[, "ID"]),]
rownames(EAGenes) <- EAGenes[, "ID"]
allgene <- EAGenes[, "ID"]
current_pathway_from_EA <- as.matrix(TableEnrichment[, GOtype])
TableNames <- gsub("David",
"",
paste("Top ", GOtype, " n. ",
1:topPathways, " of ", topPathways, sep = ""))
colnames(topPathways_tab) <- TableNames
topPathways_tab <- as.data.frame(topPathways_tab)
table_pathway_enriched <- matrix(1, nrow(current_pathway_from_EA), 8)
colnames(table_pathway_enriched) <- c(
"Pathway",
"GenesInPathway",
"Pvalue",
"FDR",
"CommonGenesPathway",
"PercentPathway",
"PercentRegulon",
"CommonGeneSymbols"
)
table_pathway_enriched <- as.data.frame(table_pathway_enriched)
for (i in 1:nrow(current_pathway_from_EA)) {
table_pathway_enriched[i, "Pathway"] <-
as.character(current_pathway_from_EA[i,])
if (nrow(TableEnrichment) == 589) {
genes_from_current_pathway_from_EA <-
GeneSplitRegulon(TableEnrichment[TableEnrichment[GOtype] ==
as.character(current_pathway_from_EA[i,]),][,
"Molecules"], ",")
}
else {
genes_from_current_pathway_from_EA <-
GeneSplitRegulon(TableEnrichment[TableEnrichment[GOtype] ==
as.character(current_pathway_from_EA[i,]),][,
"Molecules"], ", ")
}
genes_common_pathway_TFregulon <- as.matrix(intersect(
toupper(RegulonList),
toupper(genes_from_current_pathway_from_EA)
))
if (length(genes_common_pathway_TFregulon) != 0) {
current_pathway_commongenes_num <-
length(genes_common_pathway_TFregulon)
seta <- allgene %in% RegulonList
setb <- allgene %in% genes_from_current_pathway_from_EA
ft <- fisher.test(seta, setb)
FisherpvalueTF <- ft$p.value
table_pathway_enriched[i, "Pvalue"] <-
as.numeric(FisherpvalueTF)
if (FisherpvalueTF < 0.01) {
current_pathway_commongenes_percent <- paste(
"(",
format((
current_pathway_commongenes_num / length(genes_from_current_pathway_from_EA)
) *
100,
digits = 2
), "%)"
)
current_pathway_commongenes_num_with_percent <-
gsub(
" ",
"",
paste(
current_pathway_commongenes_num,
current_pathway_commongenes_percent,
"pv=",
format(FisherpvalueTF, digits = 2)
)
)
table_pathway_enriched[i, "CommonGenesPathway"] <-
length(genes_common_pathway_TFregulon)
table_pathway_enriched[i, "CommonGeneSymbols"] <-
paste0(genes_common_pathway_TFregulon, collapse = ";")
table_pathway_enriched[i, "GenesInPathway"] <-
length(genes_from_current_pathway_from_EA)
table_pathway_enriched[i, "PercentPathway"] <-
as.numeric(table_pathway_enriched[i,
"CommonGenesPathway"]) /
as.numeric(table_pathway_enriched[i,
"GenesInPathway"]) * 100
table_pathway_enriched[i, "PercentRegulon"] <-
as.numeric(table_pathway_enriched[i,
"CommonGenesPathway"]) /
length(RegulonList) *
100
}
}
}
table_pathway_enriched <-
table_pathway_enriched[order(table_pathway_enriched[,
"Pvalue"], decreasing = FALSE),]
table_pathway_enriched <-
table_pathway_enriched[table_pathway_enriched[,
"Pvalue"] < 0.01,]
table_pathway_enriched[, "FDR"] <-
p.adjust(table_pathway_enriched[,
"Pvalue"], method = "fdr")
table_pathway_enriched <-
table_pathway_enriched[table_pathway_enriched[,
"FDR"] < FDRThresh,]
table_pathway_enriched <-
table_pathway_enriched[order(table_pathway_enriched[,
"FDR"], decreasing = FALSE),]
table_pathway_enriched_filt <-
table_pathway_enriched[table_pathway_enriched$FDR < FDRThresh, ]
if (nrow(table_pathway_enriched) > 0) {
tmp <- table_pathway_enriched
tmp <- paste(
tmp[, "Pathway"],
"; FDR= ",
format(tmp[,
"FDR"], digits = 3),
"; (ng=",
round(tmp[, "GenesInPathway"]),
"); (ncommon=",
format(tmp[, "CommonGenesPathway"],
digits = 2),
")",
sep = ""
)
tmp <- as.matrix(tmp)
topPathways_tab <-
topPathways_tab[, 1:nrow(table_pathway_enriched),
drop = FALSE]
topPathways_tab[1,] <- tmp
}
else {
topPathways_tab <- NA
}
if (GeneSymbolsTable == FALSE) {
return(topPathways_tab)
}
if (GeneSymbolsTable == TRUE) {
return(table_pathway_enriched_filt)
}
}
#' @title Differentially expression analysis (DEA) using limma package.
#' @description Differentially expression analysis (DEA) using limma package.
#' @param FC.cut write
#' @param AffySet A matrix-like data object containing log-ratios or log-expression values
#' for a series of arrays, with rows corresponding to genes and columns to samples
#' @examples
#' \dontrun{
#' to add example
#' }
#' @export
#' @return List of list with tables in 2 by 2 comparison
#' of the top-ranked genes from a linear model fitted by DEA's limma
TCGAanalyze_DEA_Affy <- function(AffySet, FC.cut = 0.01) {
if (!requireNamespace("Biobase", quietly = TRUE)) {
stop("Biobase package is needed for this function to work. Please install it.",
call. = FALSE)
}
if (!requireNamespace("limma", quietly = TRUE)) {
stop("limma package is needed for this function to work. Please install it.",
call. = FALSE)
}
Pdatatable <- Biobase::phenoData(AffySet)
f <- factor(Pdatatable$Disease)
groupColors <- names(table(f))
tmp <- matrix(0, length(groupColors), length(groupColors))
colnames(tmp) <- groupColors
rownames(tmp) <- groupColors
tmp[upper.tri(tmp)] <- 1
sample_tab <- Pdatatable
f <- factor(Pdatatable$Disease)
design <- model.matrix( ~ 0 + f)
colnames(design) <- levels(f)
fit <- limma::lmFit(AffySet, design) ## fit is an object of class MArrayLM.
groupColors <- names(table(Pdatatable$Disease))
CompleteList <- vector("list", sum(tmp))
k <- 1
for (i in 1:length(groupColors)) {
col1 <- colnames(tmp)[i]
for (j in 1:length(groupColors)) {
col2 <- rownames(tmp)[j]
if (i != j) {
if (tmp[i, j] != 0) {
Comparison <- paste(col2, "-", col1, sep = "")
if (i == 4 &&
j == 6) {
Comparison <- paste(col1, "-", col2, sep = "")
}
if (i == 5 &&
j == 6) {
Comparison <- paste(col1, "-", col2, sep = "")
}
print(paste(i, j, Comparison, "to do..."))
cont.matrix <- limma::makeContrasts(I = Comparison, levels = design)
fit2 <- limma::contrasts.fit(fit, cont.matrix)
fit2 <- limma::eBayes(fit2)
sigI <- limma::topTable(
fit2,
coef = 1,
adjust.method = "BH",
sort.by = "B",
p.value = 0.05,
lfc = FC.cut,
number = 50000
)
sigIbis <- sigI[order(abs(as.numeric(sigI$logFC)), decreasing = TRUE), ]
names(CompleteList)[k] <- gsub("-", "_", Comparison)
CompleteList[[k]] <- sigIbis
k <- k + 1
}
}
}
}
return(CompleteList)
}
#' @title Generate network
#' @description TCGAanalyze_analyseGRN perform gene regulatory network.
#' @param TFs a vector of genes.
#' @param normCounts is a matrix of gene expression with genes in rows and samples in columns.
#' @param kNum the number of nearest neighbors to consider to estimate the mutual information.
#' Must be less than the number of columns of normCounts.
#' @export
#' @return an adjacent matrix
TCGAanalyze_analyseGRN <- function(TFs, normCounts, kNum) {
if (!requireNamespace("parmigene", quietly = TRUE)) {
stop(
"parmigene package is needed for this function to work. Please install it.",
call. = FALSE
)
}
MRcandidates <- intersect(rownames(normCounts), TFs)
# Mutual information between TF and genes
sampleNames <- colnames(normCounts)
geneNames <- rownames(normCounts)
messageMI_TFgenes <- paste(
"Estimation of MI among [",
length(MRcandidates),
" TRs and ",
nrow(normCounts),
" genes].....",
sep = ""
)
timeEstimatedMI_TFgenes1 <- length(MRcandidates) * nrow(normCounts) / 1000
timeEstimatedMI_TFgenes <- format(timeEstimatedMI_TFgenes1 * ncol(normCounts) / 17000, digits = 2)
messageEstimation <- print(
paste(
"I Need about ",
timeEstimatedMI_TFgenes,
"seconds for this MI estimation. [Processing 17000k elements /s] "
)
)
miTFGenes <- parmigene::knnmi.cross(normCounts[MRcandidates,], normCounts, k = kNum)
return(miTFGenes)
}
#' @title Generate pathview graph
#' @description TCGAanalyze_Pathview pathway based data integration and visualization.
#' @param dataDEGs dataDEGs
#' @param pathwayKEGG pathwayKEGG
#' @export
#' @return an adjacent matrix
#' @examples
#' \dontrun{
#' dataDEGs <- data.frame(mRNA = c("TP53","TP63","TP73"), logFC = c(1,2,3))
#' TCGAanalyze_Pathview(dataDEGs)
#' }
TCGAanalyze_Pathview <-
function(dataDEGs, pathwayKEGG = "hsa05200") {
if (!requireNamespace("clusterProfiler", quietly = TRUE)) {
stop("clusterProfiler needed for this function to work. Please install it.",
call. = FALSE)
}
if (!requireNamespace("pathview", quietly = TRUE)) {
stop("pathview needed for this function to work. Please install it.",
call. = FALSE)
}
# Converting Gene symbol to gene ID
eg = as.data.frame(
clusterProfiler::bitr(
dataDEGs$mRNA,
fromType = "SYMBOL",
toType = "ENTREZID",
OrgDb = "org.Hs.eg.db"
)
)
eg <- eg[!duplicated(eg$SYMBOL), ]
dataDEGs <- dataDEGs[dataDEGs$mRNA %in% eg$SYMBOL, ]
dataDEGs <- dataDEGs[order(dataDEGs$mRNA, decreasing = FALSE), ]
eg <- eg[order(eg$SYMBOL, decreasing = FALSE), ]
dataDEGs$GeneID <- eg$ENTREZID
dataDEGsFiltLevel_sub <-
subset(dataDEGs, select = c("GeneID", "logFC"))
genelistDEGs <- as.numeric(dataDEGsFiltLevel_sub$logFC)
names(genelistDEGs) <- dataDEGsFiltLevel_sub$GeneID
hsa05200 <- pathview::pathview(
gene.data = genelistDEGs,
pathway.id = pathwayKEGG,
species = "hsa",
limit = list(gene = as.integer(max(
abs(genelistDEGs)
)))
)
}
#' @title infer gene regulatory networks
#' @description TCGAanalyze_networkInference taking expression data as input,
#' this will return an adjacency matrix of interactions
#' @param data expression data, genes in columns, samples in rows
#' @param optionMethod inference method, chose from aracne, c3net, clr and mrnet
#' @export
#' @return an adjacent matrix
TCGAanalyze_networkInference <-
function(data, optionMethod = "clr") {
# Converting Gene symbol to gene ID
if (optionMethod == "c3net") {
if (!requireNamespace("c3net", quietly = TRUE)) {
stop(
"c3net package is needed for this function to work. Please install it.",
call. = FALSE
)
}
net <- c3net::c3net(t(data))
} else {
if (!requireNamespace("minet", quietly = TRUE)) {
stop(
"minet package is needed for this function to work. Please install it.",
call. = FALSE
)
}
net <- minet::minet(data, method = optionMethod)
}
return(net)
}
#' Creates a plot for GAIA output (all significant aberrant regions.)
#' @description
#' This function is a auxiliary function to visualize GAIA output
#' (all significant aberrant regions.)
#' @param calls A matrix with the following columns: Chromossome, Aberration Kind
#' Region Start, Region End, Region Size and score
#' @param threshold Score threshold (orange horizontal line in the plot)
#' @export
#' @importFrom graphics abline axis legend plot points
#' @return A plot with all significant aberrant regions.
#' @examples
#' call <- data.frame("Chromossome" = rep(9,100),
#' "Aberration Kind" = rep(c(-2,-1,0,1,2),20),
#' "Region Start [bp]" = 18259823:18259922,
#' "Region End [bp]" = 18259823:18259922,
#' "score" = rep(c(1,2,3,4),25))
#' gaiaCNVplot(call,threshold = 0.01)
#' call <- data.frame("Chromossome" = rep(c(1,9),50),
#' "Aberration Kind" = rep(c(-2,-1,0,1,2),20),
#' "Region Start [bp]" = 18259823:18259922,
#' "Region End [bp]" = 18259823:18259922,
#' "score" = rep(c(1,2,3,4),25))
#' gaiaCNVplot(call,threshold = 0.01)
gaiaCNVplot <- function (calls, threshold = 0.01) {
Calls <- calls[order(calls[, grep("start", colnames(calls), ignore.case = TRUE)]), ]
Calls <- Calls[order(Calls[, grep("chr", colnames(calls), ignore.case = TRUE)]), ]
rownames(Calls) <- NULL
Chromo <- Calls[, grep("chr", colnames(calls), ignore.case = TRUE)]
Gains <- apply(Calls, 1, function(x)
ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 1, x["score"], 0))
Losses <- apply(Calls, 1, function(x)
ifelse(x[grep("aberration", colnames(calls), ignore.case = TRUE)] == 0, x["score"], 0))
plot(
Gains,
ylim = c(-max(Calls[, "score"] + 2), max(Calls[, "score"] + 2)),
type = "h",
col = "red",
xlab = "Chromosome",
ylab = "Score",
xaxt = "n"
)
points(-(Losses), type = "h", col = "blue")
# Draw origin line
abline(h = 0, cex = 4)
# Draw threshold lines
abline(
h = -log10(threshold),
col = "orange",
cex = 4,
main = "test"
)
abline(
h = log10(threshold),
col = "orange",
cex = 4,
main = "test"
)
uni.chr <- unique(Chromo)
temp <- rep(0, length(uni.chr))
for (i in 1:length(uni.chr)) {
temp[i] <- max(which(uni.chr[i] == Chromo))
}
for (i in 1:length(temp)) {
abline(v = temp[i],
col = "black",
lty = "dashed")
}
nChroms <- length(uni.chr)
begin <- c()
for (d in 1:nChroms) {
chrom <- sum(Chromo == uni.chr[d])
begin <- append(begin, chrom)
}
temp2 <- rep(0, nChroms)
for (i in 1:nChroms) {
if (i == 1) {
temp2[1] <- (begin[1] * 0.5)
}
else if (i > 1) {
temp2[i] <- temp[i - 1] + (begin[i] * 0.5)
}
}
uni.chr[uni.chr == 23] <- "X"
uni.chr[uni.chr == 24] <- "Y"
for (i in 1:length(temp)) {
axis(1,
at = temp2[i],
labels = uni.chr[i],
cex.axis = 1)
}
legend(
x = 1,
y = max(Calls[, "score"] + 2),
y.intersp = 0.8,
c("Amp"),
pch = 15,
col = c("red"),
text.font = 3
)
legend(
x = 1,
y = -max(Calls[, "score"] + 0.5),
y.intersp = 0.8,
c("Del"),
pch = 15,
col = c("blue"),
text.font = 3
)
}
#' Get a matrix of interactions of genes from biogrid
#' @description
#' Using biogrid database, it will create a matrix of gene interactions.
#' If columns A and row B has value 1, it means the gene A and gene B interacts.
#' @param tmp.biogrid Biogrid table
#' @export
#' @param names.genes List of genes to filter from output. Default: consider all genes
#' @return A matrix with 1 for genes that interacts, 0 for no interaction.
#' @examples
#' names.genes.de <- c("PLCB1","MCL1","PRDX4","TTF2","TACC3", "PARP4","LSM1")
#' tmp.biogrid <- data.frame("Official.Symbol.Interactor.A" = names.genes.de,
#' "Official.Symbol.Interactor.B" = rev(names.genes.de))
#' net.biogrid.de <- getAdjacencyBiogrid(tmp.biogrid, names.genes.de)
#' \dontrun{
#' file <- paste0("http://thebiogrid.org/downloads/archives/",
#' "Release%20Archive/BIOGRID-3.4.133/BIOGRID-ALL-3.4.133.tab2.zip")
#' downloader::download(file,basename(file))
#' unzip(basename(file),junkpaths =TRUE)
#' tmp.biogrid <- read.csv(gsub("zip","txt",basename(file)),
#' header=TRUE, sep="\t", stringsAsFactors=FALSE)
#' names.genes.de <- c("PLCB1","MCL1","PRDX4","TTF2","TACC3", "PARP4","LSM1")
#' net.biogrid.de <- getAdjacencyBiogrid(tmp.biogrid, names.genes.de)
#' }
getAdjacencyBiogrid <- function(tmp.biogrid, names.genes = NULL) {
it.a <- grep("Symbol", colnames(tmp.biogrid), value = TRUE)[1]
it.b <- grep("Symbol", colnames(tmp.biogrid), value = TRUE)[2]
if (is.null(names.genes)) {
names.genes <-
sort(union(unique(tmp.biogrid[, it.a]), unique(tmp.biogrid[, it.b])))
ind <- seq(1, nrow(tmp.biogrid))
} else {
ind.A <- which(tmp.biogrid[, it.a] %in% names.genes)
ind.B <- which(tmp.biogrid[, it.b] %in% names.genes)
ind <- intersect(ind.A, ind.B)
}
mat.biogrid <- matrix(
0,
nrow = length(names.genes),
ncol = length(names.genes),
dimnames = list(names.genes, names.genes)
)
for (i in ind) {
mat.biogrid[tmp.biogrid[i, it.a], tmp.biogrid[i, it.b]] <-
mat.biogrid[tmp.biogrid[i, it.b], tmp.biogrid[i, it.a]] <- 1
}
diag(mat.biogrid) <- 0
return(mat.biogrid)
}
#' Get GDC samples with both DNA methylation (HM450K) and Gene expression data from
#' GDC databse
#' @description
#' For a given TCGA project it gets the samples (barcode) with both DNA methylation and Gene expression data
#' from GDC database
#' @param project A GDC project
#' @param n Number of samples to return. If NULL return all (default)
#' @param legacy Access legacy (hg19) or harmonized database (hg38).
#' @return A vector of barcodes
#' @export
#' @examples
#' # Get ACC samples with both DNA methylation (HM450K) and gene expression aligned to hg19
#' samples <- matchedMetExp("TCGA-UCS", legacy = TRUE)
matchedMetExp <- function(project, legacy = FALSE, n = NULL) {
if (legacy) {
# get primary solid tumor samples: DNA methylation
message("Download DNA methylation information")
met450k <- GDCquery(
project = project,
data.category = "DNA methylation",
platform = "Illumina Human Methylation 450",
legacy = TRUE,
sample.type = c("Primary Tumor")
)
# get primary solid tumor samples: RNAseq
message("Download gene expression information")
exp <- GDCquery(
project = project,
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "Illumina HiSeq",
file.type = "results",
sample.type = c("Primary Tumor"),
legacy = TRUE
)
} else {
# get primary solid tumor samples: DNA methylation
message("Download DNA methylation information")
met450k <- GDCquery(
project = project,
data.category = "DNA Methylation",
platform = "Illumina Human Methylation 450",
sample.type = c("Primary Tumor")
)
# get primary solid tumor samples: RNAseq
message("Download gene expression information")
exp <- GDCquery(
project = project,
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "HTSeq - Counts"
)
}
met450k.tp <- met450k$results[[1]]$cases
# Get patients with samples in both platforms
exp.tp <- exp$results[[1]]$cases
patients <-
unique(substr(exp.tp, 1, 15)[substr(exp.tp, 1, 12) %in% substr(met450k.tp, 1, 12)])
if (!is.null(n))
patients <- patients[1:n] # get only n samples
return(patients)
}
|