File: analysis.Rmd

package info (click to toggle)
r-bioc-tcgabiolinks 2.25.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 9,392 kB
  • sloc: makefile: 5
file content (764 lines) | stat: -rwxr-xr-x 28,013 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
---
title: "Analyzing and visualizing TCGA data"
bibliography: bibliography.bib    
vignette: >
    %\VignetteIndexEntry{7. Analyzing and visualizing TCGA data}
    %\VignetteEngine{knitr::rmarkdown}
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(dpi = 300)
knitr::opts_chunk$set(cache=FALSE)
```

```{r, echo = FALSE,hide=TRUE, message=FALSE,warning=FALSE}
devtools::load_all(".")
```
```{r message=FALSE, warning=FALSE, include=FALSE}
library(SummarizedExperiment)
library(dplyr)
library(DT)
```


# `TCGAanalyze`: Analyze data from TCGA. 
You can easily analyze data using following functions:

## `TCGAanalyze_Preprocessing`: Preprocessing of Gene Expression data (IlluminaHiSeq_RNASeqV2)

You can easily search TCGA samples, download and prepare a matrix of gene expression.
```{r, eval = FALSE}
# You can define a list of samples to query and download providing relative TCGA barcodes.
listSamples <- c(
    "TCGA-E9-A1NG-11A-52R-A14M-07","TCGA-BH-A1FC-11A-32R-A13Q-07",
    "TCGA-A7-A13G-11A-51R-A13Q-07","TCGA-BH-A0DK-11A-13R-A089-07",
    "TCGA-E9-A1RH-11A-34R-A169-07","TCGA-BH-A0AU-01A-11R-A12P-07",
    "TCGA-C8-A1HJ-01A-11R-A13Q-07","TCGA-A7-A13D-01A-13R-A12P-07",
    "TCGA-A2-A0CV-01A-31R-A115-07","TCGA-AQ-A0Y5-01A-11R-A14M-07"
)

# Query platform Illumina HiSeq with a list of barcode 
query <- GDCquery(
    project = "TCGA-BRCA", 
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification",
    barcode = listSamples
)

# Download a list of barcodes with platform IlluminaHiSeq_RNASeqV2
GDCdownload(query)

# Prepare expression matrix with geneID in the rows and samples (barcode) in the columns
# rsem.genes.results as values
BRCA.Rnaseq.SE <- GDCprepare(query)

BRCAMatrix <- assay(BRCA.Rnaseq.SE,"unstranded") 
# For gene expression if you need to see a boxplot correlation and AAIC plot to define outliers you can run
BRCA.RNAseq_CorOutliers <- TCGAanalyze_Preprocessing(BRCA.Rnaseq.SE)
```

The result is shown below:

```{r, eval = TRUE, echo = FALSE,size = 8}
library(TCGAbiolinks)
dataGE <- dataBRCA[sample(rownames(dataBRCA),10),sample(colnames(dataBRCA),7)]

knitr::kable(
    dataGE[1:10,2:3], digits = 2, 
    caption = "Example of a matrix of gene expression (10 genes in rows and 2 samples in columns)",
    row.names = TRUE
)
```

The result from `TCGAanalyze_Preprocessing` is shown below:
```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
library(png)
library(grid)
img <- readPNG("PreprocessingOutput.png")
grid.raster(img)
```

## `TCGAanalyze_DEA` `&` `TCGAanalyze_LevelTab`: Differential expression analysis (DEA)

Perform DEA (Differential expression analysis) to identify differentially expressed genes (DEGs) using the `TCGAanalyze_DEA` function. 

`TCGAanalyze_DEA` performs DEA using following functions from R \Biocpkg{edgeR}:

1. edgeR::DGEList converts the count matrix into an edgeR object.
2. edgeR::estimateCommonDisp each gene gets assigned the same dispersion estimate.
3. edgeR::exactTest performs pair-wise tests for differential expression between two groups.
4. edgeR::topTags takes the output from exactTest(), adjusts the raw p-values using the False Discovery Rate (FDR) correction, and returns the top differentially expressed genes.

This function receives as arguments:

* **mat1** The matrix of the first group (in the example, group 1 is the normal samples), 
* **mat2** The matrix of the  second group (in the example, group 2 is tumor samples)
* **Cond1type** Label for group 1
* **Cond1type** Label for group 2

Next, we filter the output of dataDEGs by abs(LogFC) >=1, and uses the
`TCGAanalyze_LevelTab` function to create a table with DEGs (differentially expressed genes), log Fold Change (FC), false discovery rate (FDR), the gene expression level for samples in Cond1type, and Cond2type, and Delta value (the difference of gene expression between the two conditions multiplied logFC).

```{r, eval = FALSE}
library(TCGAbiolinks)

# normalization of genes
dataNorm <- TCGAanalyze_Normalization(
    tabDF = BRCA.RNAseq_CorOutliers, 
    geneInfo =  geneInfoHT
)

# quantile filter of genes
dataFilt <- TCGAanalyze_Filtering(
    tabDF = dataNorm,
    method = "quantile", 
    qnt.cut =  0.25
)

# selection of normal samples "NT"
samplesNT <- TCGAquery_SampleTypes(
    barcode = colnames(dataFilt),
    typesample = c("NT")
)

# selection of tumor samples "TP"
samplesTP <- TCGAquery_SampleTypes(
    barcode = colnames(dataFilt), 
    typesample = c("TP")
)

# Diff.expr.analysis (DEA)
dataDEGs <- TCGAanalyze_DEA(
    mat1 = dataFilt[,samplesNT],
    mat2 = dataFilt[,samplesTP],
    Cond1type = "Normal",
    Cond2type = "Tumor",
    fdr.cut = 0.01 ,
    logFC.cut = 1,
    method = "glmLRT"
)

# DEGs table with expression values in normal and tumor samples
dataDEGsFiltLevel <- TCGAanalyze_LevelTab(
    FC_FDR_table_mRNA = dataDEGs,
    typeCond1 = "Tumor",
    typeCond2 = "Normal",
    TableCond1 = dataFilt[,samplesTP],
    TableCond2 = dataFilt[,samplesNT]
)

```
The result is shown below:

```{r, eval = TRUE, echo = FALSE}
library(TCGAbiolinks)
dataDEGsFiltLevel$FDR <- format(dataDEGsFiltLevel$FDR, scientific = TRUE)
knitr::kable(
    dataDEGsFiltLevel[1:10,], digits = 2,
    caption = "Table of DEGs after DEA", row.names = FALSE
)
```


Other examples are in the next sections.


### HTSeq data: Downstream analysis BRCA
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}

query <- GDCquery(
    project = "TCGA-BRCA",
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification", 
    workflow.type = "STAR - Counts"
)

samplesDown <- getResults(query,cols=c("cases"))

dataSmTP <- TCGAquery_SampleTypes(
    barcode = samplesDown,
    typesample = "TP"
)

dataSmNT <- TCGAquery_SampleTypes(
    barcode = samplesDown,
    typesample = "NT"
)
dataSmTP_short <- dataSmTP[1:10]
dataSmNT_short <- dataSmNT[1:10]

query.selected.samples <- GDCquery(
    project = "TCGA-BRCA", 
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification", 
    workflow.type = "STAR - Counts", 
    barcode = c(dataSmTP_short, dataSmNT_short)
)

GDCdownload(
    query = query.selected.samples
)

dataPrep <- GDCprepare(
    query = query.selected.samples, 
    save = TRUE
)

dataPrep <- TCGAanalyze_Preprocessing(
    object = dataPrep, 
    cor.cut = 0.6,
    datatype = "HTSeq - Counts"
)                      

dataNorm <- TCGAanalyze_Normalization(
    tabDF = dataPrep,
    geneInfo = geneInfoHT,
    method = "gcContent"
) 

boxplot(dataPrep, outline = FALSE)

boxplot(dataNorm, outline = FALSE)

dataFilt <- TCGAanalyze_Filtering(
    tabDF = dataNorm,
    method = "quantile", 
    qnt.cut =  0.25
)   

dataDEGs <- TCGAanalyze_DEA(
    mat1 = dataFilt[,dataSmTP_short],
    mat2 = dataFilt[,dataSmNT_short],
    Cond1type = "Normal",
    Cond2type = "Tumor",
    fdr.cut = 0.01 ,
    logFC.cut = 1,
    method = "glmLRT"
)  

```


### miRNA expression data: Downstream analysis BRCA
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
require(TCGAbiolinks)

query.miRNA <- GDCquery(
    project = "TCGA-BRCA", 
    experimental.strategy = "miRNA-Seq",
    data.category = "Transcriptome Profiling", 
    data.type = "miRNA Expression Quantification"
)

GDCdownload(query = query.miRNA)

dataAssy.miR <- GDCprepare(
    query = query.miRNA
)
rownames(dataAssy.miR) <- dataAssy.miR$miRNA_ID

# using read_count's data 
read_countData <-  colnames(dataAssy.miR)[grep("count", colnames(dataAssy.miR))]
dataAssy.miR <- dataAssy.miR[,read_countData]
colnames(dataAssy.miR) <- gsub("read_count_","", colnames(dataAssy.miR))

dataFilt <- TCGAanalyze_Filtering(
    tabDF = dataAssy.miR,
    method = "quantile", 
    qnt.cut =  0.25
)   

dataDEGs <- TCGAanalyze_DEA(
    mat1 = dataFilt[,dataSmNT_short.miR],
    mat2 = dataFilt[,dataSmTP_short.miR],
    Cond1type = "Normal",
    Cond2type = "Tumor",
    fdr.cut = 0.01 ,
    logFC.cut = 1,
    method = "glmLRT"
)  

```
## `TCGAanalyze_EAcomplete & TCGAvisualize_EAbarplot`: Enrichment Analysis

Researchers, in order to better understand the underlying biological processes, 
often want to retrieve a functional profile of a set of genes that might 
have an important role. This can be done by performing an enrichment analysis. 

We will perform an enrichment analysis on gene sets using the `TCGAanalyze_EAcomplete` 
function. 
Given a set of genes that are up-regulated under certain conditions, 
an enrichment analysis will identify classes of genes or proteins that 
are over-represented using annotations for that gene set.


To view the results you can use the `TCGAvisualize_EAbarplot` function as shown below.

```{r, eval = FALSE}
library(TCGAbiolinks)
# Enrichment Analysis EA
# Gene Ontology (GO) and Pathway enrichment by DEGs list
Genelist <- rownames(dataDEGsFiltLevel)

ansEA <- TCGAanalyze_EAcomplete(
    TFname = "DEA genes Normal Vs Tumor",
    RegulonList = Genelist
)

# Enrichment Analysis EA (TCGAVisualize)
# Gene Ontology (GO) and Pathway enrichment barPlot

TCGAvisualize_EAbarplot(
    tf = rownames(ansEA$ResBP), 
    GOBPTab = ansEA$ResBP,
    GOCCTab = ansEA$ResCC,
    GOMFTab = ansEA$ResMF,
    PathTab = ansEA$ResPat,
    nRGTab = Genelist, 
    nBar = 10
)

```
The result is shown below:
```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
library(png)
library(grid)
img <- readPNG("EAplot.png")
grid.raster(img)
```


The figure shows canonical pathways significantly overrepresented (enriched) by the DEGs 
(differentially expressed genes).
The most statistically significant canonical pathways identified 
in DEGs list are listed according to their p value corrected FDR (-Log) (colored bars) 
and the ratio of list genes found in each pathway over the total number of 
genes in that pathway (Ratio, red line).

## `TCGAanalyze_survival`: Survival Analysis

When analyzing survival, different problems come up than the ones discussed so far. 
One question is how do we deal with subjects dropping out of a
study. For example, assuming that we test a new cancer drug. While some subjects
die, others may believe that the new drug is not effective, and decide to drop out
of the study before the study is finished. A similar problem would be faced when
we investigate how long a machine lasts before it breaks down.

Using the clinical data, it is possible to create a survival plot with the 
function `TCGAanalyze_survival` as follows:

```{r, eval = FALSE}
clin.gbm <- GDCquery_clinic("TCGA-GBM", "clinical")
TCGAanalyze_survival(
    data = clin.gbm,
    clusterCol = "gender",
    main = "TCGA Set\n GBM",
    height = 10,
    width=10
)
```

The arguments of `TCGAanalyze_survival` are:

*  **clinical_patient** TCGA Clinical patient with the information days_to_death
*  **clusterCol** Column with groups to plot. This is a mandatory field, 
the caption will be based in this column
*  **legend** Legend title of the figure
*  **xlim** xlim x axis limits e.g. xlim = c(0, 1000). Present narrower X axis, but not affect survival estimates. 
*  **main**	 main title of the plot
*  **ylab**	y-axis text of the plot
*  **xlab** x-axis text of the plot
*  **filename**	 The name of the pdf file
*  **color** Define the colors of the lines.
*  **pvalue** Show pvalue in the plot. 
*  **risk.table** 	Show or not the risk table
*  **conf.int** 	Show confidence intervals for point estimates of survival curves.

The result is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("case2_surv.png")
grid.raster(img)
```

## `TCGAanalyze_SurvivalKM`: Correlating gene expression and Survival Analysis

```{r, eval = FALSE}
library(TCGAbiolinks)
# Survival Analysis SA

clinical_patient_Cancer <- GDCquery_clinic("TCGA-BRCA","clinical")
dataBRCAcomplete <- log2(BRCA_rnaseqv2)

tokenStop <- 1

tabSurvKMcomplete <- NULL

for( i in 1: round(nrow(dataBRCAcomplete)/100)){
    message( paste( i, "of ", round(nrow(dataBRCAcomplete)/100)))
    tokenStart <- tokenStop
    tokenStop <- 100 * i
    tabSurvKM <- TCGAanalyze_SurvivalKM(
        clinical_patient_Cancer,
        dataBRCAcomplete,
        Genelist = rownames(dataBRCAcomplete)[tokenStart:tokenStop],
        Survresult = F,
        ThreshTop = 0.67,
        ThreshDown = 0.33
    )
    
    tabSurvKMcomplete <- rbind(tabSurvKMcomplete,tabSurvKM)
}

tabSurvKMcomplete <- tabSurvKMcomplete[tabSurvKMcomplete$pvalue < 0.01,]
tabSurvKMcomplete <- tabSurvKMcomplete[order(tabSurvKMcomplete$pvalue, decreasing=F),]

tabSurvKMcompleteDEGs <- tabSurvKMcomplete[
    rownames(tabSurvKMcomplete) %in% dataDEGsFiltLevel$mRNA,
]
```
The result is shown below:

```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
tabSurvKMcompleteDEGs$pvalue <- format(tabSurvKMcompleteDEGs$pvalue, scientific = TRUE)
knitr::kable(tabSurvKMcompleteDEGs[1:5,1:4], 
             digits = 2,
             caption = "Table KM-survival genes after SA",
             row.names = TRUE)
knitr::kable(tabSurvKMcompleteDEGs[1:5,5:7], 
             digits = 2,
             row.names = TRUE)
```

## `TCGAanalyze_DMR`: Differentially methylated regions Analysis

We will search for differentially methylated CpG sites using the `TCGAanalyze_DMR`
function. In order to find these regions we use the beta-values 
(methylation values ranging from 0.0 to 1.0) to compare two groups. 

First, it calculates the difference between the mean DNA methylation of each group
for each probe. 

Second, it test for differential expression between two groups using the wilcoxon test 
adjusting by the Benjamini-Hochberg method. The default arguments was set to
require a minimum absolute beta-values difference of 0.2 and an adjusted p-value
of < 0.01. 

After these tests, we save a volcano plot (x-axis:diff mean methylation,
y-axis: statistical significance) that will help the user identify the differentially
methylated CpG sites, then the results are saved in a csv file (DMR_results.groupCol.group1.group2.csv) and finally the object is returned with the calculus in the rowRanges.

The arguments of TCGAanalyze_DMR are:

| Argument 	| Description 	|
|--------------------------	|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------	|
| data 	| SummarizedExperiment obtained from the TCGAPrepare 	|
| groupCol 	| Columns with the groups inside the SummarizedExperiment object. (This will be obtained by the function colData(data)) 	|
| group1 	| In case our object has more than 2 groups, you should set the name of the group 	|
| group2 	| In case our object has more than 2 groups, you should set the name of the group 	|
| calculate.pvalues.probes 	| In order to get the probes faster the user can select to calculate the pvalues only for the probes with a difference in DNA methylation. The default is to calculate to all probes. Possible values: "all", "differential". Default "all" 	|
| plot.filename 	| Filename. Default: volcano.pdf, volcano.svg, volcano.png. If set to FALSE, there will be no plot. 	|
| ylab 	| y axis text 	|
| xlab 	| x axis text 	|
| title 	| main title. If not specified it will be "Volcano plot (group1 vs group2) 	|
| legend 	| Legend title 	|
| color 	| vector of colors to be used in graph 	|
| label 	| vector of labels to be used in the figure. Example: c("Not Significant","Hypermethylated in group1", "Hypomethylated in group1")) 	|
| xlim 	| x limits to cut image 	|
| ylim 	| y limits to cut image 	|
| p.cut 	| p values threshold. Default: 0.01 	|
| probe.names 	| is probe.names 	|
| diffmean.cut 	| diffmean threshold. Default: 0.2 	|
| paired 	| Wilcoxon paired parameter. Default: FALSE 	|
| adj.method 	| Adjusted method for the p-value calculation 	|
| overwrite 	| Overwrite the pvalues and diffmean values if already in the object for both groups? Default: FALSE 	|
| cores 	| Number of cores to be used in the non-parametric test Default = groupCol.group1.group2.rda 	|
| save 	| Save object with results? Default: TRUE 	|


```{r, eval = FALSE}
data <- TCGAanalyze_DMC(
    data = data, 
    groupCol = "methylation_subtype",
    group1 = "CIMP.H",
    group2 = "CIMP.L",
    p.cut = 10^-5,
    diffmean.cut = 0.25,
    legend = "State",
    plot.filename = "coad_CIMPHvsCIMPL_metvolcano.png"
)
```

The output will be a plot such as the figure below. The green dots are the 
probes that are hypomethylated in group 2 compared to group 1, 
while the red dots are the hypermethylated probes in group 2 compared to group 1


```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("figure5met.png")
grid.raster(img)
```


Also, the `TCGAanalyze_DMR` 
function will save the plot as pdf and return the same SummarizedExperiment
that was given as input with the values of p-value,
p-value adjusted, diffmean and the group it belongs in the graph 
(non significant, hypomethylated, hypermethylated) in the rowRanges. 
The columns will be (where group1 and group2 are the names of the groups): 

* diffmean.group1.group2 (mean.group2 - mean.group1) 
* diffmean.group2.group1 (mean.group1 - mean.group2)
* p.value.group1.group2
* p.value.adj.group1.group2
* status.group1.group2 (Status of probes in group2 in relation to group1) 
* status.group2.group1 (Status of probes in group1 in relation to group2) 

This values can be view/acessed using the `rowRanges` 
acessesor (`rowRanges(data)`).

**Observation:** Calling the same function again, with the same arguments 
will only plot the results,  as it was already calculated. 
If you want to have them recalculated, please set
`overwrite` to `TRUE` or remove the calculated columns.

# `TCGAvisualize`: Visualize results from analysis functions with TCGA's data. 
You can easily visualize results from some following functions:

## `TCGAvisualize_Heatmap`: Create heatmaps with cluster bars

In order to have a better view of clusters, we normally use heatmaps.
`TCGAvisualize_Heatmap` will plot a heatmap and add to each sample bars representing
different features. This function is a wrapper to the package 
[ComplexHeatmap](http://bioconductor.org/packages/ComplexHeatmap/)  package,

The arguments of this function are:


* **data**	The object with the heatmap data (expression, methylation)
* **col.metadata** Metadata for the columns (patients). It should have the column bcr_patient_barcode or patient or ID with the patients barcodes.
* **row.metadata** Metadata for the rows genes (expression) or probes (methylation)
* **col.colors ** A list of names colors
* **row.colors ** A list of named colors
* **show_column_names **	Show column names names? Default: FALSE
* **show_row_names ** Show row names? Default: FALSE
* **cluster_rows ** Cluster rows ? Default: FALSE
* **cluster_columns** Cluster columns ? Default: FALSE
* **sortCol** Name of the column to be used to sort the columns
* **title** Title of the plot
* **type** Select the colors of the heatmap values. Possible values are "expression" (default), "methylation"
* **scale**	Use z-score to make the heamat? If we want to show differences between genes, it is good to make Z-score by samples (force each sample to have zero mean and standard deviation=1). If we want to show differences between samples, it is good to make Z-score by genes (force each gene to have zero mean and standard deviation=1). Possibilities: "row", "col. Default "none"


For more information please take a look on case study #2.

The result is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(jpeg)
library(grid)
img <- readJPEG("case2_Heatmap.jpg")
grid.raster(img)
```

## `TCGAvisualize_Volcano`: Create volcano plot 

Creates a volcano plot for DNA methylation or expression

The arguments of this function are:

| Argument 	| Description 	|
|-----------------	|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------	|
| x 	| x-axis data 	|
| y 	| y-axis data 	|
| filename 	| Filename. Default: volcano.pdf, volcano.svg, volcano.png 	|
| ylab 	| y axis text 	|
| xlab 	| x axis text 	|
| title 	| main title. If not specified it will be "Volcano plot (group1 vs group2) 	|
| legend 	| Legend title 	|
| label 	| vector of labels to be used in the figure. Example: c("Not Significant","Hypermethylated in group1", "Hypomethylated in group1"))#' 	|
| xlim 	| x limits to cut image 	|
| ylim 	| y limits to cut image 	|
| color 	| vector of colors to be used in graph 	|
| names 	| Names to be plotted if significant. Should be the same size of x and y 	|
| names.fill 	| Names should be filled in a color box? Default: TRUE 	|
| show.names 	| What names will be showd? Possibilities: "both", "significant", "highlighted" 	|
| x.cut 	| x-axis threshold. Default: 0.0 If you give only one number (e.g. 0.2) the cut-offs will be -0.2 and 0.2. Or you can give different cut-offs as a vector (e.g. c(-0.3,0.4)) 	|
| y.cut 	| p-values threshold. 	|
| height 	| Figure height 	|
| width 	| Figure width 	|
| highlight 	| List of genes/probes to be highlighted. It should be in the names argument. 	|
| highlight.color 	| Color of the points highlighted 	|
| names.size 	| Size of the names text 	|
| dpi 	| Figure dpi 	|
|  	|  	|
|  	|  	|
|  	|  	|
|  	|  	|
For more information please take a look on case study #3.

## `TCGAvisualize_PCA`: Principal Component Analysis plot for differentially expressed genes

In order to better understand our genes, we can perform a PCA to reduce the
number of dimensions of our gene set. The function `TCGAvisualize_PCA` will plot
the PCA for different groups.

The arguments of this function are:

* **dataFilt** The expression matrix after normalization and quantile filter
* **dataDEGsFiltLevel** The TCGAanalyze_LevelTab output
* **ntopgenes** number of DEGs genes to plot in PCA
* ** group1 a string containing the barcode list of the samples in control group
* ** group2 a string containing the barcode list of the samples in disease group


```{r, eval = FALSE}
# normalization of genes
dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)

# quantile filter of genes
dataFilt <- TCGAanalyze_Filtering(
    tabDF = dataNorm,
    method = "quantile", 
    qnt.cut =  0.25
)

# selection of normal samples "NT" 
group1 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
# selection of normal samples "TP" 
group2 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))

# Principal Component Analysis plot for ntop selected DEGs
pca <- TCGAvisualize_PCA(
    dataFilt = dataFilt,
    dataDEGsFiltLevel = dataDEGsFiltLevel,
    ntopgenes = 200, 
    group1 = group1,
    group2 =  group2
)
```

The result is shown below:
```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
library(png)
library(grid)
img <- readPNG("PCAtop200DEGs.png")
grid.raster(img)
```

## `TCGAvisualize_meanMethylation`: Mean DNA Methylation Analysis
Using the data and calculating the mean DNA methylation per group, it is possible 
to create a mean DNA methylation boxplot with the function 
`TCGAvisualize_meanMethylation` as follows:

```{r,include=FALSE,echo=FALSE, fig.height=5, message=FALSE, warning=FALSE,eval=FALSE}
query <- GDCquery(
    project = "TCGA-GBM",
    data.category = "DNA methylation",
    platform = "Illumina Human Methylation 27",
    legacy = TRUE, 
    barcode = c("TCGA-02-0058-01A-01D-0186-05", "TCGA-12-1597-01B-01D-0915-05",
                "TCGA-12-0829-01A-01D-0392-05", "TCGA-06-0155-01B-01D-0521-05",
                "TCGA-02-0099-01A-01D-0199-05", "TCGA-19-4068-01A-01D-1228-05",
                "TCGA-19-1788-01A-01D-0595-05", "TCGA-16-0848-01A-01D-0392-05"
    )
)
GDCdownload(query, method = "api")
data <- GDCprepare(query)

```


```{r, eval=FALSE, echo=TRUE, fig.height=5, message=FALSE, warning=FALSE}
query <- GDCquery(
    project = "TCGA-GBM",
    data.category = "DNA methylation",
    platform = "Illumina Human Methylation 27",
    legacy = TRUE, 
    barcode = c(
        "TCGA-02-0058-01A-01D-0186-05", "TCGA-12-1597-01B-01D-0915-05",
        "TCGA-12-0829-01A-01D-0392-05", "TCGA-06-0155-01B-01D-0521-05",
        "TCGA-02-0099-01A-01D-0199-05", "TCGA-19-4068-01A-01D-1228-05",
        "TCGA-19-1788-01A-01D-0595-05", "TCGA-16-0848-01A-01D-0392-05"
    )
)
GDCdownload(query, method = "api")
data <- GDCprepare(query)
```


## `TCGAvisualize_starburst`: Integration of gene expression and DNA methylation data 

The starburst plot is proposed to combine information from two volcano plots, 
and is applied for a study of DNA methylation and gene expression. It first introduced in 2010 [@noushmehr2010identification]. In order to
reproduce this plot, we will use the `TCGAvisualize_starburst` function.

The function creates Starburst plot for comparison of DNA methylation
and gene expression. The log10 (FDR-corrected P value) for DNA methylation is plotted in the x axis, and for gene expression in the y axis, for each gene. 
The black dashed line shows the FDR-adjusted P value of 0.01.

The arguments of this function are:

| Argument      | Description |   
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| exp | Object obtained by DEArnaSEQ function |
| group1 | The name of the group 1 Obs: Column p.value.adj.group1.group2 should exist |
| group2 | The name of the group 2. Obs: Column p.value.adj.group1.group2 should exist |
| exp.p.cut | expression p value cut-off |
| met.p.cut | methylation p value cut-off |
| diffmean.cut | If set, the probes with diffmean higher than methylation cut-off will be highlighted in the plot. And the data frame return will be subseted. |
| logFC.cut | If set, the probes with expression fold change higher than methylation cut-off will be highlighted in the plot. And the data frame return will be subseted. |
| met.platform | DNA methylation platform ("27K","450K" or "EPIC") |
| genome | Genome of reference ("hg38" or "hg19") used to identify nearest probes TSS |
| names | Add the names of the significant genes? Default: FALSE |
| names.fill | Names should be filled in a color box? Default: TRUE |
| filename | The filename of the file (it can be pdf, svg, png, etc) |
| return.plot | If true only plot object will be returned (pdf will not be created) |
| ylab | y axis text |
| xlab | x axis text |
| title | main title |
| legend | legend title |
| color | vector of colors to be used in graph |
| label | vector of labels to be used in graph |
| xlim | x limits to cut image |
| ylim | y limits to cut image |
| height | Figure height |
| width | Figure width |
| dpi | Figure dpi |

```{r, eval = FALSE}
starburst <- TCGAvisualize_starburst(
    met = coad.SummarizeExperiment, 
    exp = different.experssion.analysis.data,
    group1 = "CIMP.H",
    group2 = "CIMP.L",
    met.platform = "450K",
    genome = "hg19",
    met.p.cut = 10^-5, 
    exp.p.cut = 10^-5,
    names = TRUE
)
```

As a result, the function will a plot the figure below and return a matrix with 
the Gene_symbol and it status in relation to expression (up regulated/down regulated) and to methylation (Hyper/Hypo methylated). The case study 3, shows the complete pipeline
for creating this figure.


```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("figure5star.png")
grid.raster(img)
```



# Session Information
******
```{r sessionInfo}
sessionInfo()
```