1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
---
title: "Analyzing and visualizing TCGA data"
bibliography: bibliography.bib
vignette: >
%\VignetteIndexEntry{7. Analyzing and visualizing TCGA data}
%\VignetteEngine{knitr::rmarkdown}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(dpi = 300)
knitr::opts_chunk$set(cache=FALSE)
```
```{r, echo = FALSE,hide=TRUE, message=FALSE,warning=FALSE}
devtools::load_all(".")
```
```{r message=FALSE, warning=FALSE, include=FALSE}
library(SummarizedExperiment)
library(dplyr)
library(DT)
```
# `TCGAanalyze`: Analyze data from TCGA.
You can easily analyze data using following functions:
## `TCGAanalyze_Preprocessing`: Preprocessing of Gene Expression data (IlluminaHiSeq_RNASeqV2)
You can easily search TCGA samples, download and prepare a matrix of gene expression.
```{r, eval = FALSE}
# You can define a list of samples to query and download providing relative TCGA barcodes.
listSamples <- c(
"TCGA-E9-A1NG-11A-52R-A14M-07","TCGA-BH-A1FC-11A-32R-A13Q-07",
"TCGA-A7-A13G-11A-51R-A13Q-07","TCGA-BH-A0DK-11A-13R-A089-07",
"TCGA-E9-A1RH-11A-34R-A169-07","TCGA-BH-A0AU-01A-11R-A12P-07",
"TCGA-C8-A1HJ-01A-11R-A13Q-07","TCGA-A7-A13D-01A-13R-A12P-07",
"TCGA-A2-A0CV-01A-31R-A115-07","TCGA-AQ-A0Y5-01A-11R-A14M-07"
)
# Query platform Illumina HiSeq with a list of barcode
query <- GDCquery(
project = "TCGA-BRCA",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
barcode = listSamples
)
# Download a list of barcodes with platform IlluminaHiSeq_RNASeqV2
GDCdownload(query)
# Prepare expression matrix with geneID in the rows and samples (barcode) in the columns
# rsem.genes.results as values
BRCA.Rnaseq.SE <- GDCprepare(query)
BRCAMatrix <- assay(BRCA.Rnaseq.SE,"unstranded")
# For gene expression if you need to see a boxplot correlation and AAIC plot to define outliers you can run
BRCA.RNAseq_CorOutliers <- TCGAanalyze_Preprocessing(BRCA.Rnaseq.SE)
```
The result is shown below:
```{r, eval = TRUE, echo = FALSE,size = 8}
library(TCGAbiolinks)
dataGE <- dataBRCA[sample(rownames(dataBRCA),10),sample(colnames(dataBRCA),7)]
knitr::kable(
dataGE[1:10,2:3], digits = 2,
caption = "Example of a matrix of gene expression (10 genes in rows and 2 samples in columns)",
row.names = TRUE
)
```
The result from `TCGAanalyze_Preprocessing` is shown below:
```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
library(png)
library(grid)
img <- readPNG("PreprocessingOutput.png")
grid.raster(img)
```
## `TCGAanalyze_DEA` `&` `TCGAanalyze_LevelTab`: Differential expression analysis (DEA)
Perform DEA (Differential expression analysis) to identify differentially expressed genes (DEGs) using the `TCGAanalyze_DEA` function.
`TCGAanalyze_DEA` performs DEA using following functions from R \Biocpkg{edgeR}:
1. edgeR::DGEList converts the count matrix into an edgeR object.
2. edgeR::estimateCommonDisp each gene gets assigned the same dispersion estimate.
3. edgeR::exactTest performs pair-wise tests for differential expression between two groups.
4. edgeR::topTags takes the output from exactTest(), adjusts the raw p-values using the False Discovery Rate (FDR) correction, and returns the top differentially expressed genes.
This function receives as arguments:
* **mat1** The matrix of the first group (in the example, group 1 is the normal samples),
* **mat2** The matrix of the second group (in the example, group 2 is tumor samples)
* **Cond1type** Label for group 1
* **Cond1type** Label for group 2
Next, we filter the output of dataDEGs by abs(LogFC) >=1, and uses the
`TCGAanalyze_LevelTab` function to create a table with DEGs (differentially expressed genes), log Fold Change (FC), false discovery rate (FDR), the gene expression level for samples in Cond1type, and Cond2type, and Delta value (the difference of gene expression between the two conditions multiplied logFC).
```{r, eval = FALSE}
library(TCGAbiolinks)
# normalization of genes
dataNorm <- TCGAanalyze_Normalization(
tabDF = BRCA.RNAseq_CorOutliers,
geneInfo = geneInfoHT
)
# quantile filter of genes
dataFilt <- TCGAanalyze_Filtering(
tabDF = dataNorm,
method = "quantile",
qnt.cut = 0.25
)
# selection of normal samples "NT"
samplesNT <- TCGAquery_SampleTypes(
barcode = colnames(dataFilt),
typesample = c("NT")
)
# selection of tumor samples "TP"
samplesTP <- TCGAquery_SampleTypes(
barcode = colnames(dataFilt),
typesample = c("TP")
)
# Diff.expr.analysis (DEA)
dataDEGs <- TCGAanalyze_DEA(
mat1 = dataFilt[,samplesNT],
mat2 = dataFilt[,samplesTP],
Cond1type = "Normal",
Cond2type = "Tumor",
fdr.cut = 0.01 ,
logFC.cut = 1,
method = "glmLRT"
)
# DEGs table with expression values in normal and tumor samples
dataDEGsFiltLevel <- TCGAanalyze_LevelTab(
FC_FDR_table_mRNA = dataDEGs,
typeCond1 = "Tumor",
typeCond2 = "Normal",
TableCond1 = dataFilt[,samplesTP],
TableCond2 = dataFilt[,samplesNT]
)
```
The result is shown below:
```{r, eval = TRUE, echo = FALSE}
library(TCGAbiolinks)
dataDEGsFiltLevel$FDR <- format(dataDEGsFiltLevel$FDR, scientific = TRUE)
knitr::kable(
dataDEGsFiltLevel[1:10,], digits = 2,
caption = "Table of DEGs after DEA", row.names = FALSE
)
```
Other examples are in the next sections.
### HTSeq data: Downstream analysis BRCA
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
query <- GDCquery(
project = "TCGA-BRCA",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "STAR - Counts"
)
samplesDown <- getResults(query,cols=c("cases"))
dataSmTP <- TCGAquery_SampleTypes(
barcode = samplesDown,
typesample = "TP"
)
dataSmNT <- TCGAquery_SampleTypes(
barcode = samplesDown,
typesample = "NT"
)
dataSmTP_short <- dataSmTP[1:10]
dataSmNT_short <- dataSmNT[1:10]
query.selected.samples <- GDCquery(
project = "TCGA-BRCA",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "STAR - Counts",
barcode = c(dataSmTP_short, dataSmNT_short)
)
GDCdownload(
query = query.selected.samples
)
dataPrep <- GDCprepare(
query = query.selected.samples,
save = TRUE
)
dataPrep <- TCGAanalyze_Preprocessing(
object = dataPrep,
cor.cut = 0.6,
datatype = "HTSeq - Counts"
)
dataNorm <- TCGAanalyze_Normalization(
tabDF = dataPrep,
geneInfo = geneInfoHT,
method = "gcContent"
)
boxplot(dataPrep, outline = FALSE)
boxplot(dataNorm, outline = FALSE)
dataFilt <- TCGAanalyze_Filtering(
tabDF = dataNorm,
method = "quantile",
qnt.cut = 0.25
)
dataDEGs <- TCGAanalyze_DEA(
mat1 = dataFilt[,dataSmTP_short],
mat2 = dataFilt[,dataSmNT_short],
Cond1type = "Normal",
Cond2type = "Tumor",
fdr.cut = 0.01 ,
logFC.cut = 1,
method = "glmLRT"
)
```
### miRNA expression data: Downstream analysis BRCA
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
require(TCGAbiolinks)
query.miRNA <- GDCquery(
project = "TCGA-BRCA",
experimental.strategy = "miRNA-Seq",
data.category = "Transcriptome Profiling",
data.type = "miRNA Expression Quantification"
)
GDCdownload(query = query.miRNA)
dataAssy.miR <- GDCprepare(
query = query.miRNA
)
rownames(dataAssy.miR) <- dataAssy.miR$miRNA_ID
# using read_count's data
read_countData <- colnames(dataAssy.miR)[grep("count", colnames(dataAssy.miR))]
dataAssy.miR <- dataAssy.miR[,read_countData]
colnames(dataAssy.miR) <- gsub("read_count_","", colnames(dataAssy.miR))
dataFilt <- TCGAanalyze_Filtering(
tabDF = dataAssy.miR,
method = "quantile",
qnt.cut = 0.25
)
dataDEGs <- TCGAanalyze_DEA(
mat1 = dataFilt[,dataSmNT_short.miR],
mat2 = dataFilt[,dataSmTP_short.miR],
Cond1type = "Normal",
Cond2type = "Tumor",
fdr.cut = 0.01 ,
logFC.cut = 1,
method = "glmLRT"
)
```
## `TCGAanalyze_EAcomplete & TCGAvisualize_EAbarplot`: Enrichment Analysis
Researchers, in order to better understand the underlying biological processes,
often want to retrieve a functional profile of a set of genes that might
have an important role. This can be done by performing an enrichment analysis.
We will perform an enrichment analysis on gene sets using the `TCGAanalyze_EAcomplete`
function.
Given a set of genes that are up-regulated under certain conditions,
an enrichment analysis will identify classes of genes or proteins that
are over-represented using annotations for that gene set.
To view the results you can use the `TCGAvisualize_EAbarplot` function as shown below.
```{r, eval = FALSE}
library(TCGAbiolinks)
# Enrichment Analysis EA
# Gene Ontology (GO) and Pathway enrichment by DEGs list
Genelist <- rownames(dataDEGsFiltLevel)
ansEA <- TCGAanalyze_EAcomplete(
TFname = "DEA genes Normal Vs Tumor",
RegulonList = Genelist
)
# Enrichment Analysis EA (TCGAVisualize)
# Gene Ontology (GO) and Pathway enrichment barPlot
TCGAvisualize_EAbarplot(
tf = rownames(ansEA$ResBP),
GOBPTab = ansEA$ResBP,
GOCCTab = ansEA$ResCC,
GOMFTab = ansEA$ResMF,
PathTab = ansEA$ResPat,
nRGTab = Genelist,
nBar = 10
)
```
The result is shown below:
```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
library(png)
library(grid)
img <- readPNG("EAplot.png")
grid.raster(img)
```
The figure shows canonical pathways significantly overrepresented (enriched) by the DEGs
(differentially expressed genes).
The most statistically significant canonical pathways identified
in DEGs list are listed according to their p value corrected FDR (-Log) (colored bars)
and the ratio of list genes found in each pathway over the total number of
genes in that pathway (Ratio, red line).
## `TCGAanalyze_survival`: Survival Analysis
When analyzing survival, different problems come up than the ones discussed so far.
One question is how do we deal with subjects dropping out of a
study. For example, assuming that we test a new cancer drug. While some subjects
die, others may believe that the new drug is not effective, and decide to drop out
of the study before the study is finished. A similar problem would be faced when
we investigate how long a machine lasts before it breaks down.
Using the clinical data, it is possible to create a survival plot with the
function `TCGAanalyze_survival` as follows:
```{r, eval = FALSE}
clin.gbm <- GDCquery_clinic("TCGA-GBM", "clinical")
TCGAanalyze_survival(
data = clin.gbm,
clusterCol = "gender",
main = "TCGA Set\n GBM",
height = 10,
width=10
)
```
The arguments of `TCGAanalyze_survival` are:
* **clinical_patient** TCGA Clinical patient with the information days_to_death
* **clusterCol** Column with groups to plot. This is a mandatory field,
the caption will be based in this column
* **legend** Legend title of the figure
* **xlim** xlim x axis limits e.g. xlim = c(0, 1000). Present narrower X axis, but not affect survival estimates.
* **main** main title of the plot
* **ylab** y-axis text of the plot
* **xlab** x-axis text of the plot
* **filename** The name of the pdf file
* **color** Define the colors of the lines.
* **pvalue** Show pvalue in the plot.
* **risk.table** Show or not the risk table
* **conf.int** Show confidence intervals for point estimates of survival curves.
The result is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("case2_surv.png")
grid.raster(img)
```
## `TCGAanalyze_SurvivalKM`: Correlating gene expression and Survival Analysis
```{r, eval = FALSE}
library(TCGAbiolinks)
# Survival Analysis SA
clinical_patient_Cancer <- GDCquery_clinic("TCGA-BRCA","clinical")
dataBRCAcomplete <- log2(BRCA_rnaseqv2)
tokenStop <- 1
tabSurvKMcomplete <- NULL
for( i in 1: round(nrow(dataBRCAcomplete)/100)){
message( paste( i, "of ", round(nrow(dataBRCAcomplete)/100)))
tokenStart <- tokenStop
tokenStop <- 100 * i
tabSurvKM <- TCGAanalyze_SurvivalKM(
clinical_patient_Cancer,
dataBRCAcomplete,
Genelist = rownames(dataBRCAcomplete)[tokenStart:tokenStop],
Survresult = F,
ThreshTop = 0.67,
ThreshDown = 0.33
)
tabSurvKMcomplete <- rbind(tabSurvKMcomplete,tabSurvKM)
}
tabSurvKMcomplete <- tabSurvKMcomplete[tabSurvKMcomplete$pvalue < 0.01,]
tabSurvKMcomplete <- tabSurvKMcomplete[order(tabSurvKMcomplete$pvalue, decreasing=F),]
tabSurvKMcompleteDEGs <- tabSurvKMcomplete[
rownames(tabSurvKMcomplete) %in% dataDEGsFiltLevel$mRNA,
]
```
The result is shown below:
```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
tabSurvKMcompleteDEGs$pvalue <- format(tabSurvKMcompleteDEGs$pvalue, scientific = TRUE)
knitr::kable(tabSurvKMcompleteDEGs[1:5,1:4],
digits = 2,
caption = "Table KM-survival genes after SA",
row.names = TRUE)
knitr::kable(tabSurvKMcompleteDEGs[1:5,5:7],
digits = 2,
row.names = TRUE)
```
## `TCGAanalyze_DMR`: Differentially methylated regions Analysis
We will search for differentially methylated CpG sites using the `TCGAanalyze_DMR`
function. In order to find these regions we use the beta-values
(methylation values ranging from 0.0 to 1.0) to compare two groups.
First, it calculates the difference between the mean DNA methylation of each group
for each probe.
Second, it test for differential expression between two groups using the wilcoxon test
adjusting by the Benjamini-Hochberg method. The default arguments was set to
require a minimum absolute beta-values difference of 0.2 and an adjusted p-value
of < 0.01.
After these tests, we save a volcano plot (x-axis:diff mean methylation,
y-axis: statistical significance) that will help the user identify the differentially
methylated CpG sites, then the results are saved in a csv file (DMR_results.groupCol.group1.group2.csv) and finally the object is returned with the calculus in the rowRanges.
The arguments of TCGAanalyze_DMR are:
| Argument | Description |
|-------------------------- |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| data | SummarizedExperiment obtained from the TCGAPrepare |
| groupCol | Columns with the groups inside the SummarizedExperiment object. (This will be obtained by the function colData(data)) |
| group1 | In case our object has more than 2 groups, you should set the name of the group |
| group2 | In case our object has more than 2 groups, you should set the name of the group |
| calculate.pvalues.probes | In order to get the probes faster the user can select to calculate the pvalues only for the probes with a difference in DNA methylation. The default is to calculate to all probes. Possible values: "all", "differential". Default "all" |
| plot.filename | Filename. Default: volcano.pdf, volcano.svg, volcano.png. If set to FALSE, there will be no plot. |
| ylab | y axis text |
| xlab | x axis text |
| title | main title. If not specified it will be "Volcano plot (group1 vs group2) |
| legend | Legend title |
| color | vector of colors to be used in graph |
| label | vector of labels to be used in the figure. Example: c("Not Significant","Hypermethylated in group1", "Hypomethylated in group1")) |
| xlim | x limits to cut image |
| ylim | y limits to cut image |
| p.cut | p values threshold. Default: 0.01 |
| probe.names | is probe.names |
| diffmean.cut | diffmean threshold. Default: 0.2 |
| paired | Wilcoxon paired parameter. Default: FALSE |
| adj.method | Adjusted method for the p-value calculation |
| overwrite | Overwrite the pvalues and diffmean values if already in the object for both groups? Default: FALSE |
| cores | Number of cores to be used in the non-parametric test Default = groupCol.group1.group2.rda |
| save | Save object with results? Default: TRUE |
```{r, eval = FALSE}
data <- TCGAanalyze_DMC(
data = data,
groupCol = "methylation_subtype",
group1 = "CIMP.H",
group2 = "CIMP.L",
p.cut = 10^-5,
diffmean.cut = 0.25,
legend = "State",
plot.filename = "coad_CIMPHvsCIMPL_metvolcano.png"
)
```
The output will be a plot such as the figure below. The green dots are the
probes that are hypomethylated in group 2 compared to group 1,
while the red dots are the hypermethylated probes in group 2 compared to group 1
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("figure5met.png")
grid.raster(img)
```
Also, the `TCGAanalyze_DMR`
function will save the plot as pdf and return the same SummarizedExperiment
that was given as input with the values of p-value,
p-value adjusted, diffmean and the group it belongs in the graph
(non significant, hypomethylated, hypermethylated) in the rowRanges.
The columns will be (where group1 and group2 are the names of the groups):
* diffmean.group1.group2 (mean.group2 - mean.group1)
* diffmean.group2.group1 (mean.group1 - mean.group2)
* p.value.group1.group2
* p.value.adj.group1.group2
* status.group1.group2 (Status of probes in group2 in relation to group1)
* status.group2.group1 (Status of probes in group1 in relation to group2)
This values can be view/acessed using the `rowRanges`
acessesor (`rowRanges(data)`).
**Observation:** Calling the same function again, with the same arguments
will only plot the results, as it was already calculated.
If you want to have them recalculated, please set
`overwrite` to `TRUE` or remove the calculated columns.
# `TCGAvisualize`: Visualize results from analysis functions with TCGA's data.
You can easily visualize results from some following functions:
## `TCGAvisualize_Heatmap`: Create heatmaps with cluster bars
In order to have a better view of clusters, we normally use heatmaps.
`TCGAvisualize_Heatmap` will plot a heatmap and add to each sample bars representing
different features. This function is a wrapper to the package
[ComplexHeatmap](http://bioconductor.org/packages/ComplexHeatmap/) package,
The arguments of this function are:
* **data** The object with the heatmap data (expression, methylation)
* **col.metadata** Metadata for the columns (patients). It should have the column bcr_patient_barcode or patient or ID with the patients barcodes.
* **row.metadata** Metadata for the rows genes (expression) or probes (methylation)
* **col.colors ** A list of names colors
* **row.colors ** A list of named colors
* **show_column_names ** Show column names names? Default: FALSE
* **show_row_names ** Show row names? Default: FALSE
* **cluster_rows ** Cluster rows ? Default: FALSE
* **cluster_columns** Cluster columns ? Default: FALSE
* **sortCol** Name of the column to be used to sort the columns
* **title** Title of the plot
* **type** Select the colors of the heatmap values. Possible values are "expression" (default), "methylation"
* **scale** Use z-score to make the heamat? If we want to show differences between genes, it is good to make Z-score by samples (force each sample to have zero mean and standard deviation=1). If we want to show differences between samples, it is good to make Z-score by genes (force each gene to have zero mean and standard deviation=1). Possibilities: "row", "col. Default "none"
For more information please take a look on case study #2.
The result is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(jpeg)
library(grid)
img <- readJPEG("case2_Heatmap.jpg")
grid.raster(img)
```
## `TCGAvisualize_Volcano`: Create volcano plot
Creates a volcano plot for DNA methylation or expression
The arguments of this function are:
| Argument | Description |
|----------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| x | x-axis data |
| y | y-axis data |
| filename | Filename. Default: volcano.pdf, volcano.svg, volcano.png |
| ylab | y axis text |
| xlab | x axis text |
| title | main title. If not specified it will be "Volcano plot (group1 vs group2) |
| legend | Legend title |
| label | vector of labels to be used in the figure. Example: c("Not Significant","Hypermethylated in group1", "Hypomethylated in group1"))#' |
| xlim | x limits to cut image |
| ylim | y limits to cut image |
| color | vector of colors to be used in graph |
| names | Names to be plotted if significant. Should be the same size of x and y |
| names.fill | Names should be filled in a color box? Default: TRUE |
| show.names | What names will be showd? Possibilities: "both", "significant", "highlighted" |
| x.cut | x-axis threshold. Default: 0.0 If you give only one number (e.g. 0.2) the cut-offs will be -0.2 and 0.2. Or you can give different cut-offs as a vector (e.g. c(-0.3,0.4)) |
| y.cut | p-values threshold. |
| height | Figure height |
| width | Figure width |
| highlight | List of genes/probes to be highlighted. It should be in the names argument. |
| highlight.color | Color of the points highlighted |
| names.size | Size of the names text |
| dpi | Figure dpi |
| | |
| | |
| | |
| | |
For more information please take a look on case study #3.
## `TCGAvisualize_PCA`: Principal Component Analysis plot for differentially expressed genes
In order to better understand our genes, we can perform a PCA to reduce the
number of dimensions of our gene set. The function `TCGAvisualize_PCA` will plot
the PCA for different groups.
The arguments of this function are:
* **dataFilt** The expression matrix after normalization and quantile filter
* **dataDEGsFiltLevel** The TCGAanalyze_LevelTab output
* **ntopgenes** number of DEGs genes to plot in PCA
* ** group1 a string containing the barcode list of the samples in control group
* ** group2 a string containing the barcode list of the samples in disease group
```{r, eval = FALSE}
# normalization of genes
dataNorm <- TCGAbiolinks::TCGAanalyze_Normalization(dataBRCA, geneInfo)
# quantile filter of genes
dataFilt <- TCGAanalyze_Filtering(
tabDF = dataNorm,
method = "quantile",
qnt.cut = 0.25
)
# selection of normal samples "NT"
group1 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
# selection of normal samples "TP"
group2 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))
# Principal Component Analysis plot for ntop selected DEGs
pca <- TCGAvisualize_PCA(
dataFilt = dataFilt,
dataDEGsFiltLevel = dataDEGsFiltLevel,
ntopgenes = 200,
group1 = group1,
group2 = group2
)
```
The result is shown below:
```{r, fig.width=6, fig.height=4, echo=FALSE, fig.align="center"}
library(png)
library(grid)
img <- readPNG("PCAtop200DEGs.png")
grid.raster(img)
```
## `TCGAvisualize_meanMethylation`: Mean DNA Methylation Analysis
Using the data and calculating the mean DNA methylation per group, it is possible
to create a mean DNA methylation boxplot with the function
`TCGAvisualize_meanMethylation` as follows:
```{r,include=FALSE,echo=FALSE, fig.height=5, message=FALSE, warning=FALSE,eval=FALSE}
query <- GDCquery(
project = "TCGA-GBM",
data.category = "DNA methylation",
platform = "Illumina Human Methylation 27",
legacy = TRUE,
barcode = c("TCGA-02-0058-01A-01D-0186-05", "TCGA-12-1597-01B-01D-0915-05",
"TCGA-12-0829-01A-01D-0392-05", "TCGA-06-0155-01B-01D-0521-05",
"TCGA-02-0099-01A-01D-0199-05", "TCGA-19-4068-01A-01D-1228-05",
"TCGA-19-1788-01A-01D-0595-05", "TCGA-16-0848-01A-01D-0392-05"
)
)
GDCdownload(query, method = "api")
data <- GDCprepare(query)
```
```{r, eval=FALSE, echo=TRUE, fig.height=5, message=FALSE, warning=FALSE}
query <- GDCquery(
project = "TCGA-GBM",
data.category = "DNA methylation",
platform = "Illumina Human Methylation 27",
legacy = TRUE,
barcode = c(
"TCGA-02-0058-01A-01D-0186-05", "TCGA-12-1597-01B-01D-0915-05",
"TCGA-12-0829-01A-01D-0392-05", "TCGA-06-0155-01B-01D-0521-05",
"TCGA-02-0099-01A-01D-0199-05", "TCGA-19-4068-01A-01D-1228-05",
"TCGA-19-1788-01A-01D-0595-05", "TCGA-16-0848-01A-01D-0392-05"
)
)
GDCdownload(query, method = "api")
data <- GDCprepare(query)
```
## `TCGAvisualize_starburst`: Integration of gene expression and DNA methylation data
The starburst plot is proposed to combine information from two volcano plots,
and is applied for a study of DNA methylation and gene expression. It first introduced in 2010 [@noushmehr2010identification]. In order to
reproduce this plot, we will use the `TCGAvisualize_starburst` function.
The function creates Starburst plot for comparison of DNA methylation
and gene expression. The log10 (FDR-corrected P value) for DNA methylation is plotted in the x axis, and for gene expression in the y axis, for each gene.
The black dashed line shows the FDR-adjusted P value of 0.01.
The arguments of this function are:
| Argument | Description |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| exp | Object obtained by DEArnaSEQ function |
| group1 | The name of the group 1 Obs: Column p.value.adj.group1.group2 should exist |
| group2 | The name of the group 2. Obs: Column p.value.adj.group1.group2 should exist |
| exp.p.cut | expression p value cut-off |
| met.p.cut | methylation p value cut-off |
| diffmean.cut | If set, the probes with diffmean higher than methylation cut-off will be highlighted in the plot. And the data frame return will be subseted. |
| logFC.cut | If set, the probes with expression fold change higher than methylation cut-off will be highlighted in the plot. And the data frame return will be subseted. |
| met.platform | DNA methylation platform ("27K","450K" or "EPIC") |
| genome | Genome of reference ("hg38" or "hg19") used to identify nearest probes TSS |
| names | Add the names of the significant genes? Default: FALSE |
| names.fill | Names should be filled in a color box? Default: TRUE |
| filename | The filename of the file (it can be pdf, svg, png, etc) |
| return.plot | If true only plot object will be returned (pdf will not be created) |
| ylab | y axis text |
| xlab | x axis text |
| title | main title |
| legend | legend title |
| color | vector of colors to be used in graph |
| label | vector of labels to be used in graph |
| xlim | x limits to cut image |
| ylim | y limits to cut image |
| height | Figure height |
| width | Figure width |
| dpi | Figure dpi |
```{r, eval = FALSE}
starburst <- TCGAvisualize_starburst(
met = coad.SummarizeExperiment,
exp = different.experssion.analysis.data,
group1 = "CIMP.H",
group2 = "CIMP.L",
met.platform = "450K",
genome = "hg19",
met.p.cut = 10^-5,
exp.p.cut = 10^-5,
names = TRUE
)
```
As a result, the function will a plot the figure below and return a matrix with
the Gene_symbol and it status in relation to expression (up regulated/down regulated) and to methylation (Hyper/Hypo methylated). The case study 3, shows the complete pipeline
for creating this figure.
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("figure5star.png")
grid.raster(img)
```
# Session Information
******
```{r sessionInfo}
sessionInfo()
```
|