File: casestudy.Rmd

package info (click to toggle)
r-bioc-tcgabiolinks 2.25.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 9,392 kB
  • sloc: makefile: 5
file content (852 lines) | stat: -rwxr-xr-x 26,530 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
---
title: "Case Studies"
bibliography: bibliography.bib    
vignette: >
    %\VignetteIndexEntry{8. Case Studies}
    %\VignetteEngine{knitr::rmarkdown}
---

```{r setup, include=FALSE}
knitr::opts_chunk$set(dpi = 300)
knitr::opts_chunk$set(cache=FALSE)
```

```{r message = FALSE, warning = FALSE, include = FALSE}
library(TCGAbiolinks)
library(SummarizedExperiment)
library(dplyr)
library(DT)
```

# Introduction 

This vignette shows a complete workflow of the TCGAbiolinks package. 
The code is divided in 4 case study:

1. Expression pipeline (BRCA)
2. Expression pipeline (GBM)
3. Integration of DNA methylation and RNA expression pipeline (COAD)
4. ELMER pipeline (KIRC)

# Case study n. 1: Pan Cancer downstream analysis BRCA
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
library(SummarizedExperiment)
library(TCGAbiolinks)

query.exp <- GDCquery(
    project = "TCGA-BRCA", 
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification", 
    workflow.type = "STAR - Counts",
    sample.type = c("Primary Tumor","Solid Tissue Normal")
)
GDCdownload(
    query = query.exp,
    files.per.chunk = 100
)

brca.exp <- GDCprepare(
    query = query.exp, 
    save = TRUE, 
    save.filename = "brcaExp.rda"
)

# get subtype information
infomation.subtype <- TCGAquery_subtype(tumor = "BRCA")

# get clinical data
information.clinical <- GDCquery_clinic(project = "TCGA-BRCA",type = "clinical") 

# Which samples are Primary Tumor
samples.primary.tumour <- brca.exp$barcode[brca.exp$shortLetterCode == "TP"]

# which samples are solid tissue normal
samples.solid.tissue.normal <- brca.exp$barcode[brca.exp$shortLetterCode == "NT"]
```

Using `TCGAnalyze_DEA`, we identified 4,815 differentially expression genes (DEG) (log 
fold change >=1 and FDR < 1%) between 113 normal and 1106 BRCA samples. In 
order to understand the underlying biological process from DEGs we performed an 
enrichment analysis using `TCGAnalyze_EA_complete` function.  

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
dataPrep <- TCGAanalyze_Preprocessing(
    object = brca.exp, 
    cor.cut = 0.6
)                      

dataNorm <- TCGAanalyze_Normalization(
    tabDF = dataPrep,
    geneInfo = geneInfoHT,
    method = "gcContent"
)                

dataFilt <- TCGAanalyze_Filtering(
    tabDF = dataNorm,
    method = "quantile", 
    qnt.cut =  0.25
)   

dataDEGs <- TCGAanalyze_DEA(
    mat1 = dataFilt[,samples.solid.tissue.normal],
    mat2 = dataFilt[,samples.primary.tumour],
    Cond1type = "Normal",
    Cond2type = "Tumor",
    fdr.cut = 0.01 ,
    logFC.cut = 2,
    method = "glmLRT",
    pipeline = "edgeR"
)  
```

TCGAbiolinks outputs bar chart with the number of genes for the main categories of 
three ontologies (GO:biological process, GO:cellular component, and GO:molecular 
function, respectively). 

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
ansEA <- TCGAanalyze_EAcomplete(
    TFname = "DEA genes Normal Vs Tumor",
    RegulonList = dataDEGs$gene_name
)  

TCGAvisualize_EAbarplot(
    tf = rownames(ansEA$ResBP),
    GOBPTab = ansEA$ResBP,
    GOCCTab = ansEA$ResCC,
    GOMFTab = ansEA$ResMF,
    PathTab = ansEA$ResPat,
    nRGTab = dataDEGs$gene_name,
    nBar = 10
)
```


The figure resulted from the code above is shown below.
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("case1_EA.png")
grid.raster(img)
```

The Kaplan-Meier analysis was used to compute survival univariate curves, and  
log-Ratio test was computed to assess the statistical significance by using 
TCGAanalyze_SurvivalKM function; starting with 3,390 DEGs genes we found 555 
significantly genes with p.value <0.05. 

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}

group1 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("NT"))
group2 <- TCGAquery_SampleTypes(colnames(dataFilt), typesample = c("TP"))

dataSurv <- TCGAanalyze_SurvivalKM(
    clinical_patient = dataClin,
    dataGE = dataFilt,
    Genelist = rownames(dataDEGs),
    Survresult = FALSE,
    ThreshTop = 0.67,
    ThreshDown = 0.33,
    p.cut = 0.05, 
    group1 = group1, 
    group2 = group2
)
```

Cox-regression analysis was used to compute survival multivariate curves, and cox 
p-value was computed to assess the statistical significance by using 
TCGAnalyze_SurvivalCoxNET function. Survival multivariate analysis found 160 
significantly genes according to the cox p-value FDR 5.00e-02. From DEGs that we 
found to correlate  significantly with survival by both univariate and multivariate 
analyses we analyzed the following network.

The interactome network graph was generated using STRING.,org.Hs.string version 
10 (Human functional protein association network). The network graph was resized 
by dnet package considering only multivariate survival genes, with strong interaction 
(threshold = 700) we obtained a subgraphsub graph of 24 nodes and 31 edges.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}

require(dnet)  # to change
org.Hs.string <- dRDataLoader(RData = "org.Hs.string")

TabCoxNet <- TCGAvisualize_SurvivalCoxNET(
    dataClin,
    dataFilt, 
    Genelist = rownames(dataSurv),
    scoreConfidence = 700,
    org.Hs.string = org.Hs.string,
    titlePlot = "Case Study n.1 dnet"
)
```

The figure resulted from the code above is shown below.
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("case1_dnet.png")
grid.raster(img)
```

# Case study n. 2: Pan Cancer downstream analysis LGG

We focused on the analysis of LGG samples. In particular, we used TCGAbiolinks
to download 293 samples with molecular subtypes. Link the complete [complete code](https://gist.github.com/tiagochst/277651ebed998fd3d1952d3fbc376ef2).
.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
library(TCGAbiolinks)
library(SummarizedExperiment)

query.exp <- GDCquery(
    project = "TCGA-LGG", 
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification", 
    workflow.type = "STAR - Counts",
    sample.type = c("Primary Tumor")
)

GDCdownload(query.exp)

lgg.exp <- GDCprepare(
    query = query.exp, 
    save = FALSE
)
```

First, we searched for possible outliers using the `TCGAanalyze_Preprocessing` 
function, which performs an Array Array Intensity correlation AAIC.
We used all samples in expression data which contain molecular subtypes, filtering 
out samples without molecular information, and using only IDHmut-codel (n=85),
IDHmut-non-codel (n=141) and IDHwt (n=56), NA (11), to define a square 
symmetric matrix of pearson correlation among all samples (n=293). 
According to this matrix we found no samples with low correlation (cor.cut = 0.6) 
that can be identified as possible outliers, so we continued our analysis 
with 70 samples. 

Second, using the `TCGAanalyze_Normalization` function we normalized mRNA 
transcripts and miRNA, using EDASeq package. This function does use 
Within-lane normalization procedures to adjust for GC-content effect 
(or other gene-level effects) on read counts: loess robust local regression, 
global-scaling, and full-quantile normalization [@risso2011gc] and 
between-lane normalization procedures to adjust for distributional differences 
between lanes (e.g., sequencing depth): global-scaling and full-quantile 
normalization [@bullard2010evaluation].

Third, using the `TCGAanalyze_Filtering` function we applied 3 filters removing 
features / mRNAs with low signal across samples obtaining 4578, 4284, 
1187 mRNAs respectively. 

Then we applied two Hierarchical cluster analysis on 1187 mRNAs after the three 
filters described above, the first cluster using as method ward.D2, and the 
second with ConsensusClusterPlus.

After the two clustering analysis, with cut.tree = 4 we obtained n= 4 expression clusters (EC).


```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
library(dplyr)

dataPrep <- TCGAanalyze_Preprocessing(
    object = lgg.exp, 
    cor.cut = 0.6
)
dataNorm <- TCGAanalyze_Normalization(
    tabDF = dataPrep,
    geneInfo = geneInfoHT,
    method = "gcContent"
)

datFilt <- dataNorm %>% 
    TCGAanalyze_Filtering(method = "varFilter") %>%
    TCGAanalyze_Filtering(method = "filter1") %>%  
    TCGAanalyze_Filtering(method = "filter2",foldChange = 1)

data_Hc2 <- TCGAanalyze_Clustering(
    tabDF = datFilt,
    method = "consensus",
    methodHC = "ward.D2"
) 
# Add  cluster information to Summarized Experiment
colData(lgg.exp)$groupsHC <- paste0("EC",data_Hc2[[4]]$consensusClass)
```

The next steps will be to visualize the data. First, we created the survival plot.
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
TCGAanalyze_survival(
    data = colData(lgg.exp),
    clusterCol = "groupsHC",
    main = "TCGA kaplan meier survival plot from consensus cluster",
    legend = "RNA Group",
    height = 10,
    risk.table = T,
    conf.int = F,
    color = c("black","red","blue","green3"),
    filename = "survival_lgg_expression_subtypes.png"
)
```


The result is showed below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("case2_surv.png")
grid.raster(img)
```

We will also, create a heatmap of the expression.
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
TCGAvisualize_Heatmap(
    data = t(datFilt),
    col.metadata =  colData(lgg.exp)[,
                                     c("barcode",
                                       "groupsHC",
                                       "paper_Histology",
                                       "paper_IDH.codel.subtype")
    ],
    col.colors =  list(
        groupsHC = c(
            "EC1"="black",
            "EC2"="red",
            "EC3"="blue",
            "EC4"="green3")
    ),
    sortCol = "groupsHC",
    type = "expression", # sets default color
    scale = "row", # use z-scores for better visualization. Center gene expression level around 0.
    title = "Heatmap from concensus cluster", 
    filename = "case2_Heatmap.png",
    extremes = seq(-2,2,1),
    color.levels = colorRampPalette(c("green", "black", "red"))(n = 5),
    cluster_rows = TRUE,
    cluster_columns = FALSE,
    width = 1000,
    height = 500
)
```

The result is shown below:

```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(jpeg)
library(grid)
img <- readJPEG("case2_Heatmap.jpg")
grid.raster(img)
```

Finally, we will take a look in the mutation genes. We will first download the MAF file
with `GDCquery`,`GDCdownload` and `GDCprepare`. In this example we will investigate the gene "ATR".

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
library(maftools)
library(dplyr)
query <- GDCquery(
    project = "TCGA-LGG", 
    data.category = "Simple Nucleotide Variation", 
    access = "open", 
    data.type = "Masked Somatic Mutation", 
    workflow.type = "Aliquot Ensemble Somatic Variant Merging and Masking"
)
GDCdownload(query)
LGGmut <- GDCprepare(query)
# Selecting gene
LGGmut.atr <- LGGmut %>% dplyr::filter(Hugo_Symbol == "ATR")

dataMut <- LGGmut.atr[!duplicated(LGGmut.atr$Tumor_Sample_Barcode),]
dataMut$Tumor_Sample_Barcode <- substr(dataMut$Tumor_Sample_Barcode,1,12)

# Adding the Expression Cluster classification found before
dataMut <- merge(dataMut, cluster, by.y = "patient", by.x = "Tumor_Sample_Barcode")
```

# Case study n. 3: Integration of methylation and expression for ACC

In recent years, it has been described the relationship between 
DNA methylation and gene expression and the study of this relationship 
is often difficult to accomplish.

This case study will show the steps to investigate the relationship
between the two types of data.

First, we downloaded ACC DNA methylation data for HumanMethylation450k platforms, and ACC RNA expression data for Illumina HiSeq platform. 

TCGAbiolinks adds by default the subtypes classification already published by researchers.

We will use this classification to do our examples. 
So, selected the groups CIMP-low and CIMP-high to do RNA expression and DNA methylation comparison.


```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
library(TCGAbiolinks)
library(SummarizedExperiment)

#-----------------------------------
# STEP 1: Search, download, prepare |
#-----------------------------------
# 1.1 - DNA methylation
# ----------------------------------
query.met <- GDCquery(
    project = "TCGA-ACC", 
    data.category = "DNA Methylation", 
    data.type = "Methylation Beta Value",
    platform = "Illumina Human Methylation 450"
)

GDCdownload(
    query = query.met, 
    files.per.chunk = 20,
    directory = "case3/GDCdata"
)

acc.met <- GDCprepare(
    query = query.met,
    save = FALSE,
    directory = "case3/GDCdata"
)

#-----------------------------------
# 1.2 - RNA expression
# ----------------------------------
query.exp <- GDCquery(
    project = "TCGA-ACC", 
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification", 
    workflow.type = "STAR - Counts"
)

GDCdownload( 
    query = query.exp,
    files.per.chunk = 20,
    directory = "case3/GDCdata"
)

acc.exp <- GDCprepare(
    query = query.exp, 
    save = FALSE,
    directory = "case3/GDCdata"
)
```

For DNA methylation, we perform a DMC (different methylated CpGs) analysis, which will give the difference of DNA methylation for the probes of the groups and their significance value.
The output can be seen in a volcano plot. 
Note: Depending on the number of samples this function can be very slow
due to the wilcoxon test, taking from hours to days.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
# na.omit
acc.met <- acc.met[rowSums(is.na(assay(acc.met))) == 0,]

# Volcano plot
acc.met <- TCGAanalyze_DMC(
    data = acc.met, 
    groupCol = "subtype_MethyLevel",
    group1 = "CIMP-high",
    group2="CIMP-low",
    p.cut = 10^-5,
    diffmean.cut = 0.25,
    legend = "State",
    plot.filename = "case3/CIMP-highvsCIMP-low_metvolcano.png"
)
```

The figure resulted from the code above is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("CIMP-highvsCIMP-low_metvolcano.png")
grid.raster(img)
```


For the expression analysis, we do a DEA (differential expression analysis) which will give the fold change 
of gene expression and their significance value.
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
#-------------------------------------------------
# 2.3 - DEA - Expression analysis - volcano plot
# ------------------------------------------------
acc.exp.aux <- subset(
    acc.exp, 
    select = colData(acc.exp)$subtype_MethyLevel %in% c("CIMP-high","CIMP-low")
)

idx <- colData(acc.exp.aux)$subtype_MethyLevel %in% c("CIMP-high")
idx2 <- colData(acc.exp.aux)$subtype_MethyLevel %in% c("CIMP-low")

dataPrep <- TCGAanalyze_Preprocessing(
    object = acc.exp.aux, 
    cor.cut = 0.6
)

dataNorm <- TCGAanalyze_Normalization(
    tabDF = dataPrep,
    geneInfo = geneInfoHT,
    method = "gcContent"
)

dataFilt <- TCGAanalyze_Filtering(
    tabDF = dataNorm,
    qnt.cut = 0.25,
    method = 'quantile'
)

dataDEGs <- TCGAanalyze_DEA(
    mat1 = dataFilt[,idx],
    mat2 = dataFilt[,idx2],
    Cond1type = "CIMP-high",
    Cond2type = "CIMP-low",
    method = "glmLRT"
)

TCGAVisualize_volcano(
    x = dataDEGs$logFC,
    y = dataDEGs$FDR,
    filename = "case3/Case3_volcanoexp.png",
    x.cut = 3,
    y.cut = 10^-5,
    names = rownames(dataDEGs),
    color = c("black","red","darkgreen"),
    names.size = 2,
    xlab = " Gene expression fold change (Log2)",
    legend = "State",
    title = "Volcano plot (CIMP-high vs CIMP-low)",
    width = 10
)
```

The figure resulted from the code above is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("figure5exp.png")
grid.raster(img)
```

Finally, using both previous analysis we do a starburst plot to select the genes 
that are Candidate Biologically Significant.

Observation: over the time, the number of samples has increased and the clinical data updated.
We used only the samples that had a classification in the examples.
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
#------------------------------------------
# 2.4 - Starburst plot
# -----------------------------------------
# If true the argument names of the genes in circle 
# (biologically significant genes, has a change in gene
# expression and DNA methylation and respects all the thresholds)
# will be shown
# these genes are returned by the function see starburst object after the function is executed
starburst <- TCGAvisualize_starburst(
    met = acc.met, 
    exp = dataDEGs,
    genome = "hg19"
    group1 = "CIMP-high",
    group2 = "CIMP-low",
    filename = "case3/starburst.png",
    met.platform = "450K",
    met.p.cut = 10^-5,
    exp.p.cut = 10^-5,
    diffmean.cut = 0.25,
    logFC.cut = 3,
    names = FALSE, 
    height = 10,
    width = 15,
    dpi = 300
)
```

The figure resulted from the code above is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("figure5star.png")
grid.raster(img)
```

# Case study n. 4: ELMER pipeline - KIRC

An example of package to perform DNA methylation and RNA expression analysis is ELMER [@yao2015inferring,@elmer2,@yao2015demystifying]. 
ELMER, which is designed to combine DNA methylation and gene expression data from human tissues to infer multi-level cis-regulatory networks. 
ELMER uses DNA methylation to 
identify distal probes, and correlates them with the expression of nearby genes 
to identify one or more transcriptional targets. Transcription factor (TF) binding 
site analysis of those anti-correlated distal probes is coupled with expression analysis of all TFs to 
infer upstream regulators. This package can be easily applied to TCGA public 
available cancer data sets and custom DNA methylation and gene expression data sets.

ELMER analyses have the following steps: 

1. Organize data as a *MultiAssayExperiment* object
2. Identify distal probes with significantly different DNA methylation level when comparing two sample groups.
3. Identify putative target genes for differentially methylated distal probes, using methylation vs. expression correlation
4. Identify enriched motifs for each probe belonging to a significant probe-gene pair
5. Identify master regulatory Transcription Factors (TF) whose expression associate with DNA methylation changes at multiple regulatory regions.

We will present this the study KIRC by TCGAbiolinks and 
ELMER integration. 

<div class="panel panel-info">
<div class="panel-heading">ELMER package</div>
<div class="panel-body">

For more information, please consult the ELMER package:

- http://bioconductor.org/packages/ELMER/ 

And the following articles:

- http://www.biorxiv.org/content/early/2017/06/11/148726.full.pdf
- https://www.ncbi.nlm.nih.gov/pubmed/26446758
- https://genomebiology.biomedcentral.com/articles/10.1186/s13059-015-0668-3


</div>
</div>

For the DNA methylation data we will search the platform HumanMethylation450.
After, we will download the data and prepared into a *SummarizedExperiment* object.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
library(TCGAbiolinks)
library(SummarizedExperiment)
library(ELMER)
library(parallel)
dir.create("case4")
setwd("case4")
#-----------------------------------
# STEP 1: Search, download, prepare |
#-----------------------------------
# 1.1 - DNA methylation
# ----------------------------------
query.met <- GDCquery(
    project = "TCGA-KIRC", 
    data.category = "DNA Methylation", 
    data.type = "Methylation Beta Value",
    platform = "Illumina Human Methylation 450"
)
GDCdownload(query.met)
kirc.met <- GDCprepare(
    query = query.met,
    save = TRUE, 
    save.filename = "kircDNAmet.rda",
    summarizedExperiment = TRUE
)
```

For gene expression we will use Gene Expression Quantification.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
# Step 1.2 download expression data
#-----------------------------------
# 1.2 - RNA expression
# ----------------------------------
query.exp <- GDCquery(
    project = "TCGA-KIRC",
    data.category = "Transcriptome Profiling",
    data.type = "Gene Expression Quantification", 
    workflow.type = "STAR - Counts"
)
GDCdownload(query.exp,files.per.chunk = 20)
kirc.exp <- GDCprepare(
    query = query.exp, 
    save = TRUE, 
    save.filename = "kircExp.rda"
)
```

A MultiAssayExperiment object from the r BiocStyle::Biocpkg("MultiAssayExperiment") package is the input for multiple main functions of r BiocStyle::Biocpkg("ELMER").

We will first need to get distal probes (2 KB away from TSS).
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
distal.probes <- get.feature.probe(genome = "hg38", met.platform = "450K")
```

To create it you can use the **createMAE** function. This function will keep only samples that
have both DNA methylation and gene expression.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
library(MultiAssayExperiment)
mae <- createMAE(
    exp = kirc.exp, 
    met = kirc.met,
    save = FALSE,
    linearize.exp = TRUE,
    filter.probes = distal.probes,
    save.filename = "mae_kirc.rda",
    met.platform = "450K",
    genome = "hg38",
    TCGA = TRUE
)
# Remove FFPE samples
mae <- mae[,!mae$is_ffpe]
```

We will execute ELMER to identify probes that are hypomethylated in tumor samples
compared to the normal samples.


```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
group.col <- "definition"
group1 <-  "Primary Tumor"
group2 <- "Solid Tissue Normal"
direction <- "hypo"
dir.out <- file.path("kirc",direction)
dir.create(dir.out, recursive = TRUE)
#--------------------------------------
# STEP 3: Analysis                     |
#--------------------------------------
# Step 3.1: Get diff methylated probes |
#--------------------------------------
sig.diff <- get.diff.meth(
    data = mae, 
    group.col = group.col,
    group1 =  group1,
    group2 = group2,
    minSubgroupFrac = 0.2,
    sig.dif = 0.3,
    diff.dir = direction, # Search for hypomethylated probes in group 1
    cores = 1, 
    dir.out = dir.out, 
    pvalue = 0.01
)

#-------------------------------------------------------------
# Step 3.2: Identify significant probe-gene pairs            |
#-------------------------------------------------------------
# Collect nearby 20 genes for Sig.probes
nearGenes <- GetNearGenes(
    data = mae, 
    probes = sig.diff$probe, 
    numFlankingGenes = 20, # 10 upstream and 10 dowstream genes
    cores = 1
)

pair <- get.pair(
    data = mae,
    group.col = group.col,
    group1 =  group1,
    group2 = group2,
    nearGenes = nearGenes,
    minSubgroupFrac = 0.4, # % of samples to use in to create groups U/M
    permu.dir = file.path(dir.out,"permu"),
    permu.size = 100, # Please set to 100000 to get significant results
    raw.pvalue  = 0.05,   
    Pe = 0.01, # Please set to 0.001 to get significant results
    filter.probes = TRUE, # See preAssociationProbeFiltering function
    filter.percentage = 0.05,
    filter.portion = 0.3,
    dir.out = dir.out,
    cores = 1,
    label = direction
)

# Identify enriched motif for significantly hypomethylated probes which 
# have putative target genes.
enriched.motif <- get.enriched.motif(
    data = mae,
    probes = pair$Probe, 
    dir.out = dir.out, 
    label = direction,
    min.incidence = 10,
    lower.OR = 1.1
)

TF <- get.TFs(
    data = mae, 
    group.col = group.col,
    group1 =  group1,
    group2 = group2,
    minSubgroupFrac = 0.4,
    enriched.motif = enriched.motif,
    dir.out = dir.out, 
    cores = 1, 
    label = direction
)
```

From this analysis it is possible to verify the relationship between nearby 20 
gene expression vs DNA methylation at this probe. The result of this is 
show by the ELMER scatter plot.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
scatter.plot(
    data = mae,
    byProbe = list(probe = sig.diff$probe[1], numFlankingGenes = 20), 
    category = "definition", 
    dir.out = "plots",
    lm = TRUE, # Draw linear regression curve
    save = TRUE
) 
```

The result is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("case4_elmer.png")
grid.raster(img)
```

Each scatter plot showing the average DNA methylation level of sites with the UA6 motif in all KIRC samples plotted against the expression of the transcription factor ZNF677 and PEG3 respectively.
```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
scatter.plot(
    data = mae,
    byTF = list(
        TF = c("RUNX1","RUNX2","RUNX3"),
        probe = enriched.motif[[names(enriched.motif)[10]]]
    ), 
    category = "definition",
    dir.out = "plots",
    save = TRUE, 
    lm_line = TRUE
)
```

The result is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("elmer1.png")
grid.raster(img)

```

You cen see the anticorrelated pairs of gene and probes by drawing a heatmap.

```{r,eval=FALSE,echo=TRUE,message=FALSE,warning=FALSE}
heatmapPairs(
    data = mae, 
    group.col = "definition",
    group1 = "Primary Tumor", 
    annotation.col = c("gender"),
    group2 = "Solid Tissue Normal",
    pairs = pair,
    filename =  "heatmap.pdf"
)
```
The result is shown below:
```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(jpeg)
library(grid)
img <- readJPEG("elmer2.jpg")
grid.raster(img)
```

The plot shows the odds ratio (x axis) for the selected motifs with lower boundary of OR above 1.8. 
The range shows the 95% confidence interval for each Odds Ratio.

```{r, fig.width=6, fig.height=4, echo = FALSE, fig.align="center",hide=TRUE, message=FALSE,warning=FALSE}
library(png)
library(grid)
img <- readPNG("elmer3.png")
grid.raster(img)
```

******

# Session Information
******
```{r sessionInfo}
sessionInfo()
```

# References