File: clinical.Rmd

package info (click to toggle)
r-bioc-tcgabiolinks 2.25.3%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 9,392 kB
  • sloc: makefile: 5
file content (563 lines) | stat: -rw-r--r-- 20,200 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
---
title: "TCGAbiolinks: Clinical data"
date: "`r BiocStyle::doc_date()`"
vignette: >
  %\VignetteIndexEntry{"4. Clinical data"}
  %\VignetteEngine{knitr::rmarkdown}
  %\VignetteEncoding{UTF-8}
---

<style> body {text-align: justify} </style>


```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(progress = FALSE)
```

```{r message=FALSE, warning=FALSE, include=FALSE}
library(TCGAbiolinks)
library(SummarizedExperiment)
library(dplyr)
library(DT)
```


**TCGAbiolinks** has provided a few functions to search, download and parse clinical data.
This section starts by explaining the different sources for clinical information in GDC, followed by the necessary
function to access these sources.


---
# Useful information


<div class="panel panel-info">
<div class="panel-heading">Different sources</div>
<div class="panel-body">

In GDC database the clinical data can be retrieved from different sources:

- indexed clinical: a refined clinical data that is created using the XML files.
- XML files: original source of the data
- BCR Biotab: tsv files parsed from XML files


There are two main differences between the indexed clinical and XML files:

- XML has more information: radiation, drugs information, follow-ups, biospecimen, etc. So the indexed one is only a subset of the XML files
- The indexed data contains the updated data with the follow up information. 
For example: if the patient is alive in the first time clinical data was collect and the in the next follow-up he is dead, 
the indexed data will show dead. The XML will have two fields, one for the first time saying he is alive (in the clinical part) and the follow-up saying he is dead. 
</div>
</div>

Other useful clinical information available are:

* Tissue slide image 
* Pathology report - Slide image


#  BCR Biotab


## Clinical
In this example we will fetch clinical data from  BCR Biotab files.

```{r results='hide', echo=TRUE, message=FALSE, warning=FALSE}
query <- GDCquery(
    project = "TCGA-ACC", 
    data.category = "Clinical",
    data.type = "Clinical Supplement", 
    data.format = "BCR Biotab"
)
GDCdownload(query)
clinical.BCRtab.all <- GDCprepare(query)
names(clinical.BCRtab.all)

query <- GDCquery(
    project = "TCGA-ACC", 
    data.category = "Clinical",
    data.type = "Clinical Supplement", 
    data.format = "BCR Biotab",
    file.type = "radiation"
)
GDCdownload(query)
clinical.BCRtab.radiation <- GDCprepare(query)

```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
clinical.BCRtab.all$clinical_drug_acc  %>% 
    head  %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```


In this example we will fetch all BRCA BCR Biotab files, and look for the ER status.

```{r, results = "hide",cache=TRUE, message=FALSE}
library(TCGAbiolinks)
query <- GDCquery(project = "TCGA-BRCA", 
                  data.category = "Clinical",
                  data.type = "Clinical Supplement", 
                  data.format = "BCR Biotab")
GDCdownload(query)
clinical.BCRtab.all <- GDCprepare(query)
```

```{R}
# All available tables
names(clinical.BCRtab.all)

# colnames from clinical_patient_brca
tibble::tibble(sort(colnames(clinical.BCRtab.all$clinical_patient_brca)))

# ER status count
plyr::count(clinical.BCRtab.all$clinical_patient_brca$er_status_by_ihc)

# ER content 
er.cols <- grep("^er",colnames(clinical.BCRtab.all$clinical_patient_brca))
clinical.BCRtab.all$clinical_patient_brca[,c(2,er.cols)] %>% 
    DT::datatable(options = list(scrollX = TRUE))

# All columns content first rows
clinical.BCRtab.all$clinical_patient_brca %>% 
    head  %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```

## Biospecimen


```{r, results = "hide",cache=TRUE, message=FALSE,warning=FALSE}
# Biospecimen BCR Biotab
query.biospecimen <- GDCquery(project = "TCGA-BRCA", 
                              data.category = "Biospecimen",
                              data.type = "Biospecimen Supplement", 
                              data.format = "BCR Biotab")
GDCdownload(query.biospecimen)
biospecimen.BCRtab.all <- GDCprepare(query.biospecimen)
```

```{R}
# All available tables
names(biospecimen.BCRtab.all)

biospecimen.BCRtab.all$ssf_normal_controls_ov  %>% 
    head  %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```


# Clinical indexed data

In this example we will fetch clinical indexed data (same as showed in the data portal).

```{r results='hide', echo=TRUE, message=FALSE, warning=FALSE}
clinical <- GDCquery_clinic(project = "TCGA-LUAD", type = "clinical")
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
clinical %>%
    head %>% 
    DT::datatable(filter = 'top', 
                  options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
                  rownames = FALSE)
```


```{r results='hide', echo=TRUE, message=FALSE, warning=FALSE}
clinical <- GDCquery_clinic(project = "BEATAML1.0-COHORT", type = "clinical")
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
clinical %>% 
    head %>% 
    DT::datatable(filter = 'top', 
                  options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
                  rownames = FALSE)
```


```{r results='hide', echo=TRUE, message=FALSE, warning=FALSE}
clinical <- GDCquery_clinic(project = "CPTAC-2", type = "clinical")
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
clinical %>% 
    head %>% 
    DT::datatable(filter = 'top', 
                  options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
                  rownames = FALSE)
```

```{r results='hide', echo=TRUE, message=FALSE, warning=FALSE}
clinical <- GDCquery_clinic(project = "GENIE-MSK", type = "clinical")
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
clinical %>% 
    head %>% 
    DT::datatable(filter = 'top', 
                  options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
                  rownames = FALSE)
```


# XML clinical data

The process to get data directly from the XML are:
1. Use `GDCquery` and `GDCDownload` functions to search/download either biospecimen or clinical XML files
2. Use `GDCprepare_clinic` function to parse the XML files.

The relation between one patient and other clinical information are 1:n, 
one patient could have several radiation treatments. For that reason, we only give the option
to parse individual tables (only drug information, only radiation information,...)
The selection of the table is done by the argument `clinical.info`.

<div class="panel panel-info">
<div class="panel-heading">clinical.info options to parse information for each data category </div>
<div class="panel-body">
| data.category | clinical.info |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Clinical | drug |
| Clinical | admin |
| Clinical | follow_up |
| Clinical | radiation |
| Clinical | patient |
| Clinical | stage_event |
| Clinical | new_tumor_event |
| Biospecimen | sample |
| Biospecimen | bio_patient |
| Biospecimen | analyte |
| Biospecimen | aliquot |
| Biospecimen | protocol |
| Biospecimen | portion |
| Biospecimen | slide |
| Other | msi |
</div>
</div>

Below are several examples fetching clinical data directly from the clinical XML files.

```{r results = 'hide',echo=TRUE, message=FALSE, warning=FALSE}
query <- GDCquery(project = "TCGA-COAD", 
                  data.category = "Clinical", 
                  file.type = "xml", 
                  barcode = c("TCGA-RU-A8FL","TCGA-AA-3972"))
GDCdownload(query)
clinical <- GDCprepare_clinic(query, clinical.info = "patient")
```
```{r  echo = TRUE, message = FALSE, warning = FALSE}
clinical %>% 
    datatable(filter = 'top', 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
              rownames = FALSE)
```
```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE}
clinical.drug <- GDCprepare_clinic(query, clinical.info = "drug")
```
```{r  echo = TRUE, message = FALSE, warning = FALSE}
clinical.drug %>% 
    datatable(filter = 'top', 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
              rownames = FALSE)
```

```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE}
clinical.radiation <- GDCprepare_clinic(query, clinical.info = "radiation")
```
```{r  echo = TRUE, message = FALSE, warning = FALSE}
clinical.radiation %>% 
    datatable(filter = 'top', 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
              rownames = FALSE)
```
```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE}
clinical.admin <- GDCprepare_clinic(query, clinical.info = "admin")
```
```{r  echo = TRUE, message = FALSE, warning = FALSE}
clinical.admin %>% 
    datatable(filter = 'top', 
              options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),  
              rownames = FALSE)
```


# Microsatellite data


MSI-Mono-Dinucleotide Assay is performed to test a panel of four mononucleotide repeat loci (polyadenine tracts BAT25, BAT26, BAT40, and transforming growth factor receptor type II) and three dinucleotide repeat loci (CA repeats in D2S123, D5S346, and D17S250). Two additional pentanucleotide loci (Penta D and Penta E) are included in this assay to evaluate sample identity. Multiplex fluorescent-labeled PCR and capillary electrophoresis were used to identify MSI if a variation in the number of microsatellite repeats was detected between tumor and matched non-neoplastic tissue or mononuclear blood cells. Equivocal or failed markers were re-evaluated by singleplex PCR.

classifications: microsatellite-stable (MSS), low level MSI (MSI-L) if less than 40% of markers were altered and high level MSI (MSI-H) if greater than 40% of markers were altered.

Reference: [TCGA wiki](https://wiki.nci.nih.gov/display/TCGA/Microsatellite+data)

Level 3 data is included in BCR clinical-based submissions and can be downloaded as follows:

```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE,eval = F}
query <- GDCquery(project = "TCGA-COAD", 
                  data.category = "Other",
                  legacy = TRUE,
                  access = "open",
                  data.type = "Auxiliary test",
                  barcode = c("TCGA-AD-A5EJ","TCGA-DM-A0X9"))  
GDCdownload(query)
msi_results <- GDCprepare_clinic(query, "msi")
```
```{r  echo=TRUE, message=FALSE, warning=FALSE}
msi_results %>% DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```


# Tissue slide image (SVS format)

```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE}
# Tissue slide image files from legacy database
query.legacy <- GDCquery(project = "TCGA-COAD", 
                         data.category = "Clinical", 
                         data.type = "Tissue slide image",
                         legacy = TRUE,
                         barcode = c("TCGA-RU-A8FL","TCGA-AA-3972")) 

# Tissue slide image files from harmonized database
query.harmonized <- GDCquery(project = "TCGA-OV",
                             data.category = "Biospecimen",
                             data.type = 'Slide Image')
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
query.legacy %>% 
    getResults %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))

query.harmonized  %>% 
    getResults %>% 
    head  %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```

# Diagnostic Slide (SVS format)

```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE}
# Pathology report from harmonized portal 
query.harmonized <- GDCquery(project = "TCGA-COAD", 
                             data.category = "Biospecimen", 
                             data.type = "Slide Image",
                             experimental.strategy = "Diagnostic Slide",
                             barcode = c("TCGA-RU-A8FL","TCGA-AA-3972"))  
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
query.harmonized  %>% 
    getResults %>% 
    head  %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```



# Legacy archive files
The clinical data types available in legacy database are:

* Biospecimen data (Biotab format)
* Tissue slide image (SVS format)
* Clinical Supplement (XML format)
* Pathology report (PDF)
* Clinical data (Biotab format)

## Pathology report (PDF)
```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE}
# Pathology report from legacy portal 
query.legacy <- GDCquery(project = "TCGA-COAD", 
                         data.category = "Clinical", 
                         data.type = "Pathology report",
                         legacy = TRUE,
                         barcode = c("TCGA-RU-A8FL","TCGA-AA-3972"))  
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
query.legacy %>% 
    getResults %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```

## Tissue slide image (SVS format)

```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE, eval=FALSE}
# Tissue slide image
query <- GDCquery(project = "TCGA-COAD", 
                  data.category = "Clinical", 
                  data.type = "Tissue slide image",
                  legacy = TRUE,
                  barcode = c("TCGA-RU-A8FL","TCGA-AA-3972")) 
```

```{r  echo = TRUE, message = FALSE, warning = FALSE}
query %>% 
    getResults %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```

## Clinical Supplement (XML format)

```{r results = 'hide', echo = TRUE, message = FALSE, warning = FALSE}
# Clinical Supplement
query <- GDCquery(project = "TCGA-COAD", 
                  data.category = "Clinical", 
                  data.type = "Clinical Supplement",
                  legacy = TRUE,
                  barcode = c("TCGA-RU-A8FL","TCGA-AA-3972")) 
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
query %>% 
    getResults %>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```


## Clinical data (Biotab format)
```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE}
# Clinical data
query <- GDCquery(project = "TCGA-COAD", 
                  data.category = "Clinical", 
                  data.type = "Clinical data",
                  legacy = TRUE,
                  file.type = "txt")  
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
query %>% 
    getResults %>% 
    select(-matches("cases"))%>% 
    DT::datatable(options = list(scrollX = TRUE, keys = TRUE))
```

```{r results = 'hide', echo=TRUE, message=FALSE, warning=FALSE, eval = FALSE}
GDCdownload(query)
clinical.biotab <- GDCprepare(query)
```

```{r  echo=TRUE, message=FALSE, warning=FALSE}
names(clinical.biotab)
datatable(clinical.biotab$clinical_radiation_coad, options = list(scrollX = TRUE, keys = TRUE))
```

# Filter functions 

Also, some functions to work with clinical data are provided.

For example the function `TCGAquery_SampleTypes` will filter barcodes based on a
type the argument typesample. 


| Argument 	| Description	|  	|
|------------	|--------------------------------------------------------------	|-----------------------------------------------	|
| barcode 	| is a list of samples as TCGA barcodes 	|  	|
| typesample 	| a character vector indicating tissue type to query. Example: 	|  	|
|  	| TP 	| PRIMARY TUMOR 	|
|  	| TR 	| RECURRENT TUMOR 	|
|  	| TB 	| Primary Blood Derived Cancer-Peripheral Blood 	|
|  	| TRBM 	| Recurrent Blood Derived Cancer-Bone Marrow 	|
|  	| TAP 	| Additional-New Primary 	|
|  	| TM 	| Metastatic 	|
|  	| TAM 	| Additional Metastatic 	|
|  	| THOC 	| Human Tumor Original Cells 	|
|  	| TBM 	| Primary Blood Derived Cancer-Bone Marrow 	|
|  	| NB 	| Blood Derived Normal 	|
|  	| NT 	| Solid Tissue Normal 	|
|  	| NBC 	| Buccal Cell Normal 	|
|  	| NEBV 	| EBV Immortalized Normal 	|
|  	| NBM 	| Bone Marrow Normal 	|


The function `TCGAquery_MatchedCoupledSampleTypes` will filter the samples that 
have all the typesample provided as argument. For example, if TP and TR are set 
as typesample, the function will return the barcodes of a patient if it has both types.
So, if it has a TP, but not a  TR, no barcode will be returned. If it has a TP and a TR
both barcodes are returned.

An example of the function is below:

```{r, eval = TRUE}
bar <- c("TCGA-G9-6378-02A-11R-1789-07", "TCGA-CH-5767-04A-11R-1789-07",  
         "TCGA-G9-6332-60A-11R-1789-07", "TCGA-G9-6336-01A-11R-1789-07",
         "TCGA-G9-6336-11A-11R-1789-07", "TCGA-G9-7336-11A-11R-1789-07",
         "TCGA-G9-7336-04A-11R-1789-07", "TCGA-G9-7336-14A-11R-1789-07",
         "TCGA-G9-7036-04A-11R-1789-07", "TCGA-G9-7036-02A-11R-1789-07",
         "TCGA-G9-7036-11A-11R-1789-07", "TCGA-G9-7036-03A-11R-1789-07",
         "TCGA-G9-7036-10A-11R-1789-07", "TCGA-BH-A1ES-10A-11R-1789-07",
         "TCGA-BH-A1F0-10A-11R-1789-07", "TCGA-BH-A0BZ-02A-11R-1789-07",
         "TCGA-B6-A0WY-04A-11R-1789-07", "TCGA-BH-A1FG-04A-11R-1789-08",
         "TCGA-D8-A1JS-04A-11R-2089-08", "TCGA-AN-A0FN-11A-11R-8789-08",
         "TCGA-AR-A2LQ-12A-11R-8799-08", "TCGA-AR-A2LH-03A-11R-1789-07",
         "TCGA-BH-A1F8-04A-11R-5789-07", "TCGA-AR-A24T-04A-55R-1789-07",
         "TCGA-AO-A0J5-05A-11R-1789-07", "TCGA-BH-A0B4-11A-12R-1789-07",
         "TCGA-B6-A1KN-60A-13R-1789-07", "TCGA-AO-A0J5-01A-11R-1789-07",
         "TCGA-AO-A0J5-01A-11R-1789-07", "TCGA-G9-6336-11A-11R-1789-07",
         "TCGA-G9-6380-11A-11R-1789-07", "TCGA-G9-6380-01A-11R-1789-07",
         "TCGA-G9-6340-01A-11R-1789-07", "TCGA-G9-6340-11A-11R-1789-07")

S <- TCGAquery_SampleTypes(bar,"TP")
S2 <- TCGAquery_SampleTypes(bar,"NB")

# Retrieve multiple tissue types  NOT FROM THE SAME PATIENTS
SS <- TCGAquery_SampleTypes(bar,c("TP","NB"))

# Retrieve multiple tissue types  FROM THE SAME PATIENTS
SSS <- TCGAquery_MatchedCoupledSampleTypes(bar,c("NT","TP"))
```

# Other useful code

To get all the information for TGCA samples you can use the script below:
```{r, eval = FALSE}
# This code will get all clinical indexed data from TCGA
library(data.table)
library(dplyr)
library(regexPipes)
clinical <- TCGAbiolinks:::getGDCprojects()$project_id %>% 
    regexPipes::grep("TCGA",value=T) %>% 
    sort %>% 
    plyr::alply(1,GDCquery_clinic, .progress = "text") %>% 
    rbindlist
readr::write_csv(clinical,path = paste0("all_clin_indexed.csv"))

# This code will get all clinical XML data from TCGA
getclinical <- function(proj){
    message(proj)
    while(1){
        result = tryCatch({
            query <- GDCquery(project = proj, data.category = "Clinical",file.type = "xml")
            GDCdownload(query)
            clinical <- GDCprepare_clinic(query, clinical.info = "patient")
            for(i in c("admin","radiation","follow_up","drug","new_tumor_event")){
                message(i)
                aux <- GDCprepare_clinic(query, clinical.info = i)
                if(is.null(aux) || nrow(aux) == 0) next
                # add suffix manually if it already exists
                replicated <- which(grep("bcr_patient_barcode",colnames(aux), value = T,invert = T) %in% colnames(clinical))
                colnames(aux)[replicated] <- paste0(colnames(aux)[replicated],".",i)
                if(!is.null(aux)) clinical <- merge(clinical,aux,by = "bcr_patient_barcode", all = TRUE)
            }
            readr::write_csv(clinical,path = paste0(proj,"_clinical_from_XML.csv")) # Save the clinical data into a csv file
            return(clinical)
        }, error = function(e) {
            message(paste0("Error clinical: ", proj))
        })
    }
}
clinical <- TCGAbiolinks:::getGDCprojects()$project_id %>% 
    regexPipes::grep("TCGA",value=T) %>% sort %>% 
    plyr::alply(1,getclinical, .progress = "text") %>% 
    rbindlist(fill = TRUE) %>% setDF %>% subset(!duplicated(clinical))

readr::write_csv(clinical,path = "all_clin_XML.csv")
# result: https://drive.google.com/open?id=0B0-8N2fjttG-WWxSVE5MSGpva1U
# Obs: this table has multiple lines for each patient, as the patient might have several followups, drug treatments,
# new tumor events etc...
```