1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726
|
---
title: "TCGAbiolinks: Downloading and preparing files for analysis"
date: "`r BiocStyle::doc_date()`"
vignette: >
%\VignetteIndexEntry{"3. Downloading and preparing files for analysis"}
%\VignetteEngine{knitr::rmarkdown}
%\VignetteEncoding{UTF-8}
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(progress = FALSE)
```
```{r message=FALSE, warning=FALSE, include=FALSE}
library(TCGAbiolinks)
library(SummarizedExperiment)
library(dplyr)
library(DT)
```
**TCGAbiolinks** has provided a few functions to download and prepare data from GDC for analysis.
This section starts by explaining the different downloads methods and the SummarizedExperiment object, which
is the default data structure used in TCGAbiolinks, followed by some examples.
---
# Downloading and preparing data for analysis
<div class="panel panel-info">
<div class="panel-heading">Data download: Methods differences</div>
<div class="panel-body">
There are two methods to download GDC data using TCGAbiolinks:
- `client`: this method creates a MANIFEST file and downloads the data using [GDC Data Transfer Tool](https://gdc.cancer.gov/access-data/gdc-data-transfer-tool)
this method is more reliable but it might be slower compared to the api method.
- `api`: this method uses the [GDC Application Programming Interface (API)](https://gdc.cancer.gov/developers/gdc-application-programming-interface-api) to download the data.
This will create a MANIFEST file and the data downloaded will be compressed into a tar.gz file. If the size and the number of the files are too big this tar.gz will be too big
which might have a high probability of download failure. To solve that we created the `files.per.chunk` argument which will split the files
into small chunks, for example, if `chunks.per.download` is equal to 10 we will download only 10 files inside each tar.gz.
</div>
</div>
<div class="panel panel-info">
<div class="panel-heading">Data prepared: SummarizedExperiment object</div>
<div class="panel-body">
A [SummarizedExperiment object](http://www.nature.com/nmeth/journal/v12/n2/fig_tab/nmeth.3252_F2.html)
has three main matrices that can be accessed using the [SummarizedExperiment package](http://bioconductor.org/packages/SummarizedExperiment/)):
- Sample matrix information is accessed via `colData(data)`: stores sample information. TCGAbiolinks will add indexed clinical data and subtype information from marker TCGA papers.
- Assay matrix information is accessed via `assay(data)`: stores molecular data
- Feature matrix information (gene information) is accessed via `rowRanges(data)`: stores metadata about the features, including their genomic ranges
</div>
</div>
<div class="panel panel-warning">
<div class="panel-heading">Summarized Experiment: annotation information</div>
<div class="panel-body">
When using the function `GDCprepare` there is an argument called `SummarizedExperiment`
which defines the output type a Summarized Experiment (default option) or a data frame.
To create a summarized Experiment object we annotate the data with genomic positions
with last patch release version of the genome available.
For legacy data (data aligned to hg19) TCGAbiolinks is using GRCh37.p13 and for
harmonized data (data aligned to hg38) now it is using Gencode version 36.
Unfortunately, some of the updates changes/remove gene symbols, change coordinates, etc.
Which might introduce some loss of data. For example, if the gene was removed we cannot map
it anymore and that information will be lost in the `SummarizedExperiment`.
If you set `SummarizedExperiment` to `FALSE`, you will get the data unmodified
just as they are in the files and ad your own annotation.
Also, there are no updated for DNA methylation data. But the last metadata available can be found
here: [http://zwdzwd.github.io/InfiniumAnnotation](http://zwdzwd.github.io/InfiniumAnnotation)
</div>
</div>
<div class="panel panel-danger">
<div class="panel-heading">simpleWarning in file.create(to[okay]) error </div>
<div class="panel-body">
If you received the warning/error `simpleWarning in file.create(to[okay])`
try setting `directory`
as described by some users:
https://github.com/BioinformaticsFMRP/TCGAbiolinks/issues/153#issuecomment-856385673
in `GDCprepare` and `GDCdownload`
```
<simpleWarning in file.create(to[okay]): cannot create file ... reason 'No such file or directory'>
```
</div>
</div>
## Arguments
### `GDCdownload`
| Argument | Description |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| query | A query for GDCquery function |
| token.file | Token file to download controlled data (only for method = "client") |
| method | Uses the API (POST method) or gdc client tool. Options "api", "client". API is faster, but the data might get corrupted in the download, and it might need to be executed again |
| directory | Directory/Folder where the data was downloaded. Default: GDCdata |
| files.per.chunk | This will make the API method only download n (files.per.chunk) files at a time. This may reduce the download problems when the data size is too large. Expected a integer number (example files.per.chunk = 6) |
### `GDCprepare`
| Argument | Description |
|------------------------------- |----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| query | A query for GDCquery function |
| save | Save result as RData object? |
| save.filename | Name of the file to be save if empty an automatic will be created |
| directory | Directory/Folder where the data was downloaded. Default: GDCdata |
| summarizedExperiment | Create a summarizedExperiment? Default TRUE (if possible) |
| remove.files.prepared | Remove the files read? Default: FALSE This argument will be considered only if save argument is set to true |
| add.gistic2.mut | If a list of genes (gene symbol) is given, columns with gistic2 results from GDAC firehose (hg19) and a column indicating if there is or not mutation in that gene (hg38) (TRUE or FALSE - use the MAF file for more information) will be added to the sample matrix in the summarized Experiment object. |
| mut.pipeline | If add.gistic2.mut is not NULL this field will be taken in consideration. Four separate variant calling pipelines are implemented for GDC data harmonization. Options: muse, varscan2, somaticsniper, MuTect2. For more information: https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/ |
| mutant_variant_classification | List of mutant_variant_classification that will be consider a sample mutant or not. Default: "Frame_Shift_Del", "Frame_Shift_Ins", "Missense_Mutation", "Nonsense_Mutation", "Splice_Site", "In_Frame_Del", "In_Frame_Ins", "Translation_Start_Site", "Nonstop_Mutation" |
## Search and download data from legacy database using GDC api method
In this example we will download gene expression data from legacy database (data
aligned against genome of reference hg19) using GDC api method and we will show object data and metadata.
```{r results = 'hide', message=FALSE, warning=FALSE, eval = F}
query <- GDCquery(
project = "TCGA-GBM",
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "Illumina HiSeq",
file.type = "normalized_results",
experimental.strategy = "RNA-Seq",
barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"),
legacy = TRUE
)
GDCdownload(
query = query,
method = "api",
files.per.chunk = 10
)
data <- GDCprepare(query = query)
```
```{r message=FALSE, warning=FALSE, include=FALSE}
data <- gbm.exp.legacy
```
```{r message=FALSE, warning=FALSE}
# Gene expression aligned against hg19.
datatable(
as.data.frame(colData(data)),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE)
# Only first 20 rows to make render faster
datatable(
assay(data)[1:20,],
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = TRUE
)
rowRanges(data)
```
## Search and download data for two samples from database
In this example we will download gene expression quantification from harmonized database
(data aligned against genome of reference hg38).
Also, it shows the object data and metadata.
```{r results = 'hide', message=FALSE, warning=FALSE, eval=FALSE}
# Gene expression aligned against hg38
query <- GDCquery(
project = "TCGA-GBM",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "STAR - Counts",
barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01")
)
GDCdownload(query = query)
data <- GDCprepare(query = query)
```
```{r message=FALSE, warning=FALSE, include=FALSE}
data <- gbm.exp.harmonized
```
```{r message=FALSE, warning=FALSE}
datatable(
as.data.frame(colData(data)),
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
datatable(
assay(data)[1:20,],
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = TRUE
)
rowRanges(data)
```
# `GDCprepare`: Outputs
This function is still under development, it is not working for all cases. See the tables below with the status.
Examples of query, download, prepare can be found in this [gist](https://gist.github.com/tiagochst/a701bad3fa3800ade7063760755e0aad).
## Harmonized data
| Data.category | Data.type | Workflow Type | Output |
|-----------------------------|-----------------------------------|-----------------|-----------------------------------------------------------------------------|
| Transcriptome Profiling | Gene Expression Quantification | STAR - Counts | Dataframe or SummarizedExperiment|
| | Isoform Expression Quantification | Not needed | |
| | miRNA Expression Quantification | Not needed | Dataframe |
| Copy number variation | Copy Number Segment | | Dataframe |
| | Masked Copy Number Segment | | Dataframe |
| | Gene Level Copy Number | | Dataframe |
| DNA Methylation | Methylation Beta Value | | Dataframe or SummarizedExperiment |
| Simple Nucleotide Variation | Masked Somatic Mutation | | Dataframe |
| Raw Sequencing Data | | | |
| Biospecimen | Slide Image | | |
| Biospecimen | Biospecimen Supplement | | |
| Clinical | | | |
## Legacy data
| Data.category | Data.type | Platform | file.type | Status |
|-----------------------------|-----------------------------------|-------------------------------------|--------------------|-----------------|
| Transcriptome Profiling | | | | |
| Copy number variation | - | Affymetrix SNP Array 6.0 | nocnv_hg18.seg | Working |
| | - | Affymetrix SNP Array 6.0 | hg18.seg | Working |
| | - | Affymetrix SNP Array 6.0 | nocnv_hg19.seg | Working |
| | - | Affymetrix SNP Array 6.0 | hg19.seg | Working |
| | - | Illumina HiSeq | Several | Working |
| Simple Nucleotide Variation | Simple somatic mutation | | | |
| Raw Sequencing Data | | | | |
| Biospecimen | | | | |
| Clinical | | | | |
| Protein expression | | MDA RPPA Core | - | Working |
| Gene expression | Gene expression quantification | Illumina HiSeq | normalized_results | Working |
| | | Illumina HiSeq | results | Working |
| | | HT_HG-U133A | - | Working |
| | | AgilentG4502A_07_2 | - | Data frame only |
| | | AgilentG4502A_07_1 | - | Data frame only |
| | | HuEx-1_0-st-v2 | FIRMA.txt | Not Preparing |
| | | | gene.txt | Not Preparing |
| | Isoform expression quantification | | | |
| | miRNA gene quantification | | | |
| | Exon junction quantification | | | |
| | Exon quantification | | | |
| | miRNA isoform quantification | | | |
| | | | | |
| DNA methylation | | Illumina Human Methylation 450 | Not used | Working |
| | | Illumina Human Methylation 27 | Not used | Working |
| | | Illumina DNA Methylation OMA003 CPI | Not used | Working |
| | | Illumina DNA Methylation OMA002 CPI | Not used | Working |
| | | Illumina Hi Seq | | Not working |
| Raw Microarray Data | | | | |
| Structural Rearrangement | | | | |
| Other | | | | |
# Examples
## Harmonized database: data aligned against hg38
### Copy Number Variation
#### Copy Number Segment
```{r, eval = FALSE}
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Copy Number Variation",
data.type = "Copy Number Segment",
barcode = c( "TCGA-OR-A5KU-01A-11D-A29H-01", "TCGA-OR-A5JK-01A-11D-A29H-01")
)
GDCdownload(query)
data <- GDCprepare(query)
```
#### Gene Level Copy Number
```{r, eval = FALSE}
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Copy Number Variation",
data.type = "Gene Level Copy Number",
access = "open"
)
GDCdownload(query)
data <- GDCprepare(query)
```
#### Allele-specific Copy Number Segment
```{r, eval = FALSE}
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Copy Number Variation",
data.type = "Allele-specific Copy Number Segment",
access = "open"
)
GDCdownload(query)
data <- GDCprepare(query)
```
#### Masked Copy Number Segment
```{r, eval = FALSE}
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Copy Number Variation",
data.type = "Masked Copy Number Segment",
access = "open"
)
GDCdownload(query)
data <- GDCprepare(query)
```
### Transcriptome Profiling
#### Gene Expression Quantification
For more examples, please check: http://rpubs.com/tiagochst/TCGAbiolinks_RNA-seq_new_projects
```{r, eval = FALSE}
# mRNA pipeline: https://gdc-docs.nci.nih.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/
query.exp.hg38 <- GDCquery(
project = "TCGA-GBM",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "STAR - Counts",
barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01")
)
GDCdownload(query.exp.hg38)
expdat <- GDCprepare(
query = query.exp.hg38,
save = TRUE,
save.filename = "exp.rda"
)
```
#### miRNA Expression Quantification
```{r, eval = FALSE}
library(TCGAbiolinks)
query.mirna <- GDCquery(
project = "TARGET-AML",
experimental.strategy = "miRNA-Seq",
data.category = "Transcriptome Profiling",
barcode = c("TARGET-20-PATDNN","TARGET-20-PAPUNR"),
data.type = "miRNA Expression Quantification"
)
GDCdownload(query.mirna)
mirna <- GDCprepare(
query = query.mirna,
save = TRUE,
save.filename = "mirna.rda"
)
```
#### Isoform Expression Quantification
```{r, eval = FALSE}
query.isoform <- GDCquery(
project = "TARGET-AML",
experimental.strategy = "miRNA-Seq",
data.category = "Transcriptome Profiling",
barcode = c("TARGET-20-PATDNN","TARGET-20-PAPUNR"),
data.type = "Isoform Expression Quantification"
)
GDCdownload(query.isoform)
isoform <- GDCprepare(
query = query.isoform,
save = TRUE,
save.filename = "mirna-isoform.rda"
)
```
### DNA methylation
#### Beta-values
```{r, eval = FALSE}
query_met.hg38 <- GDCquery(
project = "TCGA-BRCA",
data.category = "DNA Methylation",
data.type = "Methylation Beta Value",
platform = "Illumina Human Methylation 27",
barcode = c("TCGA-B6-A0IM")
)
GDCdownload(query_met.hg38)
data.hg38 <- GDCprepare(query_met.hg38)
query_met.hg38 <- GDCquery(
project= "TCGA-LGG",
data.category = "DNA Methylation",
data.type = "Methylation Beta Value",
platform = "Illumina Human Methylation 450",
barcode = c("TCGA-HT-8111-01A-11D-2399-05","TCGA-HT-A5R5-01A-11D-A28N-05")
)
GDCdownload(query_met.hg38)
data.hg38 <- GDCprepare(query_met.hg38)
query_met.hg38 <- GDCquery(
project= "HCMI-CMDC",
data.category = "DNA Methylation",
data.type = "Methylation Beta Value",
platform = "Illumina Methylation Epic",
barcode = c("HCM-BROD-0045")
)
GDCdownload(query_met.hg38)
data.hg38 <- GDCprepare(query_met.hg38)
```
#### IDAT files
```{R, eval = FALSE}
query <- GDCquery(
project = "TCGA-BRCA",
data.category = "DNA Methylation",
data.type = "Masked Intensities",
platform = "Illumina Human Methylation 27",
legacy = FALSE
)
GDCdownload(query, files.per.chunk=10)
betas <- GDCprepare(query)
query <- GDCquery(
project = "HCMI-CMDC",
data.category = "DNA Methylation",
data.type = "Masked Intensities",
platform = "Illumina Methylation Epic",
legacy = FALSE
)
GDCdownload(query, files.per.chunk=10)
betas <- GDCprepare(query)
query <- GDCquery(
project = "CPTAC-3",
data.category = "DNA Methylation",
data.type = "Masked Intensities",
platform = "Illumina Methylation Epic",
legacy = FALSE
)
GDCdownload(query, files.per.chunk=10)
betas <- GDCprepare(query)
query <- GDCquery(
project = "TCGA-BRCA",
data.category = "DNA Methylation",
data.type = "Masked Intensities",
platform = "Illumina Methylation Epic",
legacy = FALSE
)
GDCdownload(query, files.per.chunk=10)
betas <- GDCprepare(query)
```
### Proteome Profiling
#### Protein Expression Quantification
```{r, eval = FALSE}
query.rppa <- GDCquery(
project = "TCGA-ESCA",
data.category = "Proteome Profiling",
data.type = "Protein Expression Quantification"
)
GDCdownload(query.rppa)
rppa <- GDCprepare(query.rppa)
```
### Clinical
```{R, eval = FALSE}
query <- GDCquery(
project = "TCGA-COAD",
data.category = "Clinical",
data.type = "Clinical Supplement",
data.format = "BCR XML",
barcode = "TCGA-A6-5664"
)
GDCdownload(query)
drug <- GDCprepare_clinic(query,"drug")
query <- GDCquery(
project = "TCGA-COAD",
data.category = "Clinical",
data.type = "Clinical Supplement",
data.format = "BCR OMF XML",
barcode = "TCGA-AD-6964"
)
GDCdownload(query)
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Clinical",
data.type = "Clinical Supplement",
data.format = "BCR Biotab"
)
GDCdownload(query)
clinical.BCRtab.all <- GDCprepare(query)
names(clinical.BCRtab.all)
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Clinical",
data.type = "Clinical Supplement",
data.format = "BCR Biotab",
file.type = "radiation"
)
GDCdownload(query)
clinical.BCRtab.radiation <- GDCprepare(query)
```
### Simple Nucleotide Variation
#### Masked Somatic Mutation
For more information please check:
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/DNA_Seq_Variant_Calling_Pipeline/
```{r, eval = FALSE}
query <- GDCquery(
project = "TCGA-HNSC",
data.category = "Simple Nucleotide Variation",
data.type = "Masked Somatic Mutation",
access = "open"
)
GDCdownload(query)
maf <- GDCprepare(query)
```
### Single cell
GDC Single Cell RNA-Seq information:
https://docs.gdc.cancer.gov/Data/Bioinformatics_Pipelines/Expression_mRNA_Pipeline/#scrna-seq-pipeline-single-nuclei
```{r, eval = FALSE}
query.sc.analysis <- GDCquery(
project = "CPTAC-3",
data.category = "Transcriptome Profiling",
legacy = FALSE,
access = "open",
data.type = "Single Cell Analysis",
data.format = "TSV"
)
GDCdownload(query.sc.analysis)
Single.Cell.Analysis.list <- GDCprepare(query.sc.analysis)
```
```{r, eval = FALSE,include=F}
query.hdF5 <- GDCquery(
project = "CPTAC-3",
data.category = "Transcriptome Profiling",
legacy = FALSE,
access = "open",
data.type = "Single Cell Analysis",
barcode = c("CPT0167860015","CPT0206880004"),
data.format = "HDF5"
)
GDCdownload(query.hdF5)
df.HDF5 <- GDCprepare(query.hdF5)
```
```{r, eval = FALSE}
query.raw.counts <- GDCquery(
project = "CPTAC-3",
data.category = "Transcriptome Profiling",
legacy = FALSE,
access = "open",
data.type = "Gene Expression Quantification",
barcode = c("CPT0167860015","CPT0206880004"),
workflow.type = "CellRanger - 10x Raw Counts"
)
GDCdownload(query.raw.counts)
raw.counts.list <- GDCprepare(query.raw.counts)
```
```{r, eval = FALSE}
query.filtered.counts <- GDCquery(
project = "CPTAC-3",
data.category = "Transcriptome Profiling",
legacy = FALSE,
access = "open",
data.type = "Gene Expression Quantification",
barcode = c("CPT0167860015","CPT0206880004"),
workflow.type = "CellRanger - 10x Filtered Counts"
)
GDCdownload(query.filtered.counts)
filtered.counts.list <- GDCprepare(query.filtered.counts)
```
```{r, eval = FALSE}
query.sc.dea <- GDCquery(
project = "CPTAC-3",
data.category = "Transcriptome Profiling",
legacy = FALSE,
access = "open",
data.type = "Differential Gene Expression",
barcode = c("CPT0167860015","CPT0206880004"),
workflow.type = "Seurat - 10x Chromium"
)
GDCdownload(query.sc.dea)
sc.dea.list <- GDCprepare(query.sc.dea)
```
## Legacy archive: data aligned against hg19
### DNA methylation: Get all TCGA IDAT files
```{r message=FALSE, warning=FALSE, eval =FALSE}
#-------------------------------------------------------
# Example to idat files from TCGA projects
#-------------------------------------------------------
projects <- TCGAbiolinks:::getGDCprojects()$project_id
projects <- projects[grepl('^TCGA',projects,perl=T)]
match.file.cases.all <- NULL
for(proj in projects){
print(proj)
query <- GDCquery(
project = proj,
data.category = "Raw microarray data",
data.type = "Raw intensities",
experimental.strategy = "Methylation array",
legacy = TRUE,
file.type = ".idat",
platform = "Illumina Human Methylation 450"
)
match.file.cases <- getResults(query,cols=c("cases","file_name"))
match.file.cases$project <- proj
match.file.cases.all <- rbind(match.file.cases.all,match.file.cases)
tryCatch(
GDCdownload(query, method = "api", files.per.chunk = 20),
error = function(e) GDCdownload(query, method = "client")
)
}
# This will create a map between idat file name, cases (barcode) and project
readr::write_tsv(match.file.cases.all, path = "idat_filename_case.txt")
# code to move all files to local folder
for(file in dir(".",pattern = ".idat", recursive = T)){
TCGAbiolinks::move(file,basename(file))
}
```
### DNA methylation
```{r, eval = FALSE}
query_meth.hg19 <- GDCquery(
project= "TCGA-LGG",
data.category = "DNA methylation",
platform = "Illumina Human Methylation 450",
barcode = c("TCGA-HT-8111-01A-11D-2399-05","TCGA-HT-A5R5-01A-11D-A28N-05"),
legacy = TRUE
)
GDCdownload(query_meth.hg19)
data.hg19 <- GDCprepare(query_meth.hg19)
```
### Protein expression
```{r, eval = FALSE}
query <- GDCquery(
project = "TCGA-GBM",
data.category = "Protein expression",
legacy = TRUE,
barcode = c("TCGA-OX-A56R-01A-21-A44T-20","TCGA-08-0357-01A-21-1898-20")
)
GDCdownload(query)
data <- GDCprepare(
query, save = TRUE,
save.filename = "gbmProteinExpression.rda",
remove.files.prepared = TRUE
)
```
### Gene expression
```{r, eval = FALSE}
# Aligned against Hg19
query.exp.hg19 <- GDCquery(
project = "TCGA-GBM",
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "Illumina HiSeq",
file.type = "normalized_results",
experimental.strategy = "RNA-Seq",
barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"),
legacy = TRUE
)
GDCdownload(query.exp.hg19)
data <- GDCprepare(query.exp.hg19)
```
|