1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
---
title: "TCGAbiolinks: Searching GDC database"
date: "`r BiocStyle::doc_date()`"
vignette: >
%\VignetteIndexEntry{"2. Searching GDC database"}
%\VignetteEngine{knitr::rmarkdown}
\usepackage[utf8]{inputenc}
---
<style> body {text-align: justify} </style>
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE)
knitr::opts_knit$set(progress = FALSE)
```
**TCGAbiolinks** has provided a few functions to search GDC database.
This section starts by explaining the different GDC sources (Harmonized and Legacy Archive), followed by some examples
how to access them.
---
```{r message=FALSE, warning=FALSE, include=FALSE}
library(TCGAbiolinks)
library(SummarizedExperiment)
library(dplyr)
library(DT)
```
# Useful information
<div class="panel panel-info">
<div class="panel-heading">Different sources: Legacy vs Harmonized</div>
<div class="panel-body">
There are two available sources to download GDC data using TCGAbiolinks:
- GDC Legacy Archive : provides access to an unmodified copy of data that was previously stored in
[CGHub](https://cghub.ucsc.edu/) and in the TCGA Data Portal hosted by the TCGA Data Coordinating Center (DCC), in which uses
as references GRCh37 (hg19) and GRCh36 (hg18).
- GDC harmonized database: data available was harmonized against GRCh38 (hg38) using GDC Bioinformatics Pipelines
which provides methods to the standardization of biospecimen and
clinical data.
</div>
</div>
<div class="panel panel-info">
<div class="panel-heading">Understanding the barcode</div>
<div class="panel-body">
A TCGA barcode is composed of a collection of identifiers. Each specifically identifies a TCGA data element. Refer to the following figure for an illustration of how metadata identifiers comprise a barcode. An aliquot barcode contains the highest number of identifiers.
Example:
- Aliquot barcode: TCGA-G4-6317-02A-11D-2064-05
- Participant: TCGA-G4-6317
- Sample: TCGA-G4-6317-02
For more information check [GDC TCGA barcodes](https://docs.gdc.cancer.gov/Encyclopedia/pages/TCGA_Barcode/)
</div>
</div>
# Searching arguments
You can easily search GDC data using the `GDCquery` function.
Using a summary of filters as used in the TCGA portal, the function works
with the following arguments:
| ?project | A list of valid project (see table below)] | |
|----------------------- |------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- |------------------------------------- |
| data.category | A valid project (see list with TCGAbiolinks:::getProjectSummary(project)) | |
| data.type | A data type to filter the files to download | |
| workflow.type | GDC workflow type | |
| legacy | Search in the legacy repository | |
| access | Filter by access type. Possible values: controlled, open | |
| platform | Example: | |
| | CGH- 1x1M_G4447A | IlluminaGA_RNASeqV2 |
| | AgilentG4502A_07 | IlluminaGA_mRNA_DGE |
| | Human1MDuo | HumanMethylation450 |
| | HG-CGH-415K_G4124A | IlluminaGA_miRNASeq |
| | HumanHap550 | IlluminaHiSeq_miRNASeq |
| | ABI | H-miRNA_8x15K |
| | HG-CGH-244A | SOLiD_DNASeq |
| | IlluminaDNAMethylation_OMA003_CPI | IlluminaGA_DNASeq_automated |
| | IlluminaDNAMethylation_OMA002_CPI | HG-U133_Plus_2 |
| | HuEx- 1_0-st-v2 | Mixed_DNASeq |
| | H-miRNA_8x15Kv2 | IlluminaGA_DNASeq_curated |
| | MDA_RPPA_Core | IlluminaHiSeq_TotalRNASeqV2 |
| | HT_HG-U133A | IlluminaHiSeq_DNASeq_automated |
| | diagnostic_images | microsat_i |
| | IlluminaHiSeq_RNASeq | SOLiD_DNASeq_curated |
| | IlluminaHiSeq_DNASeqC | Mixed_DNASeq_curated |
| | IlluminaGA_RNASeq | IlluminaGA_DNASeq_Cont_automated |
| | IlluminaGA_DNASeq | IlluminaHiSeq_WGBS |
| | pathology_reports | IlluminaHiSeq_DNASeq_Cont_automated |
| | Genome_Wide_SNP_6 | bio |
| | tissue_images | Mixed_DNASeq_automated |
| | HumanMethylation27 | Mixed_DNASeq_Cont_curated |
| | IlluminaHiSeq_RNASeqV2 | Mixed_DNASeq_Cont |
| file.type | To be used in the legacy database for some platforms, to define which file types to be used. | |
| barcode | A list of barcodes to filter the files to download | |
| experimental.strategy | Filter to experimental strategy. Harmonized: WXS, RNA-Seq, miRNA-Seq, Genotyping Array. Legacy: WXS, RNA-Seq, miRNA-Seq, Genotyping Array, DNA-Seq, Methylation array, Protein expression array, WXS,CGH array, VALIDATION, Gene expression array,WGS, MSI-Mono-Dinucleotide Assay, miRNA expression array, Mixed strategies, AMPLICON, Exon array, Total RNA-Seq, Capillary sequencing, Bisulfite-Seq | |
| sample.type | A sample type to filter the files to download | |
## project options
The options for the field `project` are below:
```{r, eval = TRUE, echo = FALSE}
datatable(
TCGAbiolinks:::getGDCprojects(),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 10),
rownames = FALSE,
caption = "List of projects"
)
```
## sample.type options
The options for the field `sample.type` are below:
```{r, eval = TRUE, echo = FALSE}
datatable(
TCGAbiolinks:::getBarcodeDefinition(),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 10),
rownames = FALSE,
caption = "List sample types"
)
```
The other fields (data.category, data.type, workflow.type, platform, file.type) can be found below.
Please, note that these tables are still incomplete.
## Harmonized data options (`legacy = FALSE`)
```{r, echo=FALSE}
datatable(
readr::read_csv("https://docs.google.com/spreadsheets/d/1f98kFdj9mxVDc1dv4xTZdx8iWgUiDYO-qiFJINvmTZs/export?format=csv&gid=2046985454",col_types = readr::cols()),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 40),
rownames = FALSE
)
```
## Legacy archive data options (`legacy = TRUE`)
```{r, echo=FALSE}
datatable(
readr::read_csv("https://docs.google.com/spreadsheets/d/1f98kFdj9mxVDc1dv4xTZdx8iWgUiDYO-qiFJINvmTZs/export?format=csv&gid=1817673686",col_types = readr::cols()),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 40),
rownames = FALSE
)
```
# Harmonized database examples
## DNA methylation data: Recurrent tumor samples
In this example we will access the harmonized database (`legacy = FALSE`)
and search for all DNA methylation data for recurrent glioblastoma multiform (GBM)
and low grade gliomas (LGG) samples.
```{r message=FALSE, warning=FALSE}
query <- GDCquery(
project = c("TCGA-GBM", "TCGA-LGG"),
data.category = "DNA Methylation",
legacy = FALSE,
platform = c("Illumina Human Methylation 450"),
sample.type = "Recurrent Tumor"
)
datatable(
getResults(query),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
```
## Samples with DNA methylation and gene expression data
In this example we will access the harmonized database (`legacy = FALSE`)
and search for all patients with DNA methylation (platform HumanMethylation450k) and gene expression data
for Colon Adenocarcinoma tumor (TCGA-COAD).
```{r message=FALSE, warning = FALSE, eval = FALSE}
query.met <- GDCquery(
project = "TCGA-COAD",
data.category = "DNA Methylation",
legacy = FALSE,
platform = c("Illumina Human Methylation 450")
)
query.exp <- GDCquery(
project = "TCGA-COAD",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "STAR - Counts"
)
# Get all patients that have DNA methylation and gene expression.
common.patients <- intersect(
substr(getResults(query.met, cols = "cases"), 1, 12),
substr(getResults(query.exp, cols = "cases"), 1, 12)
)
# Only seelct the first 5 patients
query.met <- GDCquery(
project = "TCGA-COAD",
data.category = "DNA Methylation",
legacy = FALSE,
platform = c("Illumina Human Methylation 450"),
barcode = common.patients[1:5]
)
query.exp <- GDCquery(
project = "TCGA-COAD",
data.category = "Transcriptome Profiling",
data.type = "Gene Expression Quantification",
workflow.type = "STAR - Counts",
barcode = common.patients[1:5]
)
```
```{r results_matched, message=FALSE, warning=FALSE, eval = FALSE}
datatable(
getResults(query.met, cols = c("data_type","cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
datatable(
getResults(query.exp, cols = c("data_type","cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
```
## Raw Sequencing Data: Finding the match between file names and barcode for Controlled data.
This example shows how the user can search for breast cancer Raw Sequencing Data ("Controlled")
and verify the name of the files and the barcodes associated with it.
```{r message=FALSE, warning=FALSE}
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Sequencing Reads",
data.type = "Aligned Reads",
data.format = "bam",
workflow.type = "STAR 2-Pass Transcriptome"
)
# Only first 10 to make render faster
datatable(
getResults(query, rows = 1:10,cols = c("file_name","cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Sequencing Reads",
data.type = "Aligned Reads",
data.format = "bam",
workflow.type = "STAR 2-Pass Genome"
)
# Only first 10 to make render faster
datatable(
getResults(query, rows = 1:10,cols = c("file_name","cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Sequencing Reads",
data.type = "Aligned Reads",
data.format = "bam",
workflow.type = "STAR 2-Pass Chimeric"
)
# Only first 10 to make render faster
datatable(
getResults(query, rows = 1:10,cols = c("file_name","cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Sequencing Reads",
data.type = "Aligned Reads",
data.format = "bam",
workflow.type = "BWA-aln"
)
# Only first 10 to make render faster
datatable(
getResults(query, rows = 1:10,cols = c("file_name","cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
query <- GDCquery(
project = "TCGA-ACC",
data.category = "Sequencing Reads",
data.type = "Aligned Reads",
data.format = "bam",
workflow.type = "BWA with Mark Duplicates and BQSR"
)
# Only first 10 to make render faster
datatable(
getResults(query, rows = 1:10,cols = c("file_name","cases")),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
```
# Legacy archive examples
## DNA methylation
### Array-based assays
This example shows how the user can search for glioblastoma multiform (GBM)
and DNA methylation data
for platform Illumina Human Methylation 450 and Illumina Human Methylation 27.
```{r message=FALSE, warning=FALSE}
query <- GDCquery(
project = c("TCGA-GBM"),
legacy = TRUE,
data.category = "DNA methylation",
platform = c("Illumina Human Methylation 450", "Illumina Human Methylation 27")
)
datatable(
getResults(query, rows = 1:100),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
```
### whole-genome bisulfite sequencing (WGBS)
```{r message = FALSE, warning = FALSE, eval = FALSE}
query <- GDCquery(
project = c("TCGA-LUAD"),
legacy = TRUE,
data.category = "DNA methylation",
data.type = "Methylation percentage",
experimental.strategy = "Bisulfite-Seq"
)
# VCF - controlled data
query <- GDCquery(
project = c("TCGA-LUAD"),
legacy = TRUE,
data.category = "DNA methylation",
data.type = "Bisulfite sequence alignment",
experimental.strategy = "Bisulfite-Seq"
)
# WGBS BAM files - controlled data
query <- GDCquery(
project = c("TCGA-LUAD"),
legacy = TRUE,
data.type = "Aligned reads",
data.category = "Raw sequencing data",
experimental.strategy = "Bisulfite-Seq"
)
```
## Gene expression
This exmaple shows how the user can search for glioblastoma multiform (GBM)
gene expression data with the normalized results for expression of a gene.
For more information about file.types check [GDC TCGA file types](https://gdc.cancer.gov/resources-tcga-users/legacy-archive-tcga-tag-descriptions)
```{r message=FALSE, warning=FALSE}
# Gene expression aligned against hg19.
query.exp.hg19 <- GDCquery(
project = "TCGA-GBM",
data.category = "Gene expression",
data.type = "Gene expression quantification",
platform = "Illumina HiSeq",
file.type = "normalized_results",
experimental.strategy = "RNA-Seq",
barcode = c("TCGA-14-0736-02A-01R-2005-01", "TCGA-06-0211-02A-02R-2005-01"),
legacy = TRUE
)
datatable(
getResults(query.exp.hg19),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
```
# Get Manifest file
If you want to get the manifest file from the query object you can use the function *getManifest*. If you
set save to TRUEm a txt file that can be used with GDC-client Data transfer tool (DTT) or with its GUI version [ddt-ui](https://github.com/NCI-GDC/dtt-ui) will be created.
```{r message=FALSE, warning=FALSE}
getManifest(query.exp.hg19,save = FALSE)
```
# ATAC-seq data
For the moment, ATAC-seq data is available at the [GDC publication page](https://gdc.cancer.gov/about-data/publications/ATACseq-AWG).
Also, for more details, you can check an ATAC-seq workshop at http://rpubs.com/tiagochst/atac_seq_workshop
The list of file available is below:
```{r message=FALSE, warning=FALSE}
datatable(
getResults(TCGAbiolinks:::GDCquery_ATAC_seq())[,c("file_name","file_size")],
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
```
You can use the function `GDCquery_ATAC_seq` filter the manifest table and use `GDCdownload` to save the data locally.
```{r message=FALSE, warning=FALSE,eval = FALSE}
query <- TCGAbiolinks:::GDCquery_ATAC_seq(file.type = "rds")
GDCdownload(query,method = "client")
query <- TCGAbiolinks:::GDCquery_ATAC_seq(file.type = "bigWigs")
GDCdownload(query,method = "client")
```
# Summary of available files per patient
Retrieve the numner of files under each data_category + data_type + experimental_strategy + platform.
Almost like https://portal.gdc.cancer.gov/exploration
```{r message=FALSE, warning=FALSE,eval = TRUE}
tab <- getSampleFilesSummary(project = "TCGA-ACC")
datatable(
head(tab),
filter = 'top',
options = list(scrollX = TRUE, keys = TRUE, pageLength = 5),
rownames = FALSE
)
```
|