File: TFBSTools.Rnw

package info (click to toggle)
r-bioc-tfbstools 1.44.0%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: sid, trixie
  • size: 948 kB
  • sloc: xml: 1,137; ansic: 590; asm: 54; makefile: 2
file content (550 lines) | stat: -rw-r--r-- 21,874 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
%\VignetteIndexEntry{Transcription factor binding site (TFBS) analysis with the "TFBSTools" package}
%\VignettePackage{TFBSTools}
%\VignetteEngine{knitr::knitr}

\documentclass[a4paper,11pt]{article}

<<setup, include=FALSE, cache=FALSE>>=
library(knitr)
## set global chunk options
opts_chunk$set(fig.path='figure/manual-', cache.path='cache/manual-', fig.align='center', fig.show='hold', par=TRUE)
## I use = but I can replace it with <-; set code/output width to be 68
options(replace.assign=TRUE, width=68, digits=4)
## tune details of base graphics (http://yihui.name/knitr/hooks)
knit_hooks$set(par=function(before, options, envir){
if (before && options$fig.show!='none') par(mar=c(4,4,.1,.1),cex.lab=.95,cex.axis=.9,mgp=c(2,.7,0),tcl=-.3)
})
@

<<style-knitr, eval=TRUE, echo=FALSE, results="asis">>=
BiocStyle::latex()
@

<<loadTFBSTools, echo=FALSE, warning=FALSE>>=
library("TFBSTools")
@
\usepackage{amssymb,amsmath}

\bioctitle{The \Biocpkg{TFBSTools} package overview}
\author{Ge Tan \footnote{ge.tan09@imperial.ac.uk}}
\date{Edited: Sep 2015; Compiled: \today}

\begin{document}
\maketitle

\tableofcontents

\section{Introduction}

Eukaryotic regulatory regions are characterized based a set of 
discovered transcription factor binding sites (TFBSs), 
which can be represented as sequence patterns 
with various degree of degeneracy.

This \Biocpkg{TFBSTools} package is designed to be a compuational framework
for TFBSs analysis. 
Based on the famous perl module TFBS \cite{lenhard_tfbs:_2002},
we extended the class definitions and enhanced implementations 
in an interactive environment.
So far this package contains a set of integrated \R{} \Rcode{S4} style classes,
tools, JASPAR database interface functions.
Most approaches can be described in three sequential phases.
First, a pattern is generated for a set of target sequences 
known to be bound by a specific transcription factor.
Second, a set of DNA sequences are analyzed to determine
the locations of sequences consistent with the described binding pattern.
Finally, in advanced cases, predictive statistical models of regulatory
regions are constructed based on  mutiple occurrences of the detected
patterns. 

Since JASPAR2016, the next generation of 
transcription factor binding site, TFFM \cite{mathelier_next_2013},
was introduced into JASPAR for the first time.
Now \Biocpkg{TFBSTools} also supports the manipulation of TFFM.
TFFM is based on hidden Markov Model (HMM).
The biggest advantage of TFFM over basic PWM is that 
it can model position interdependence within TFBSs and variable motif length.
A novel graphical representation of the TFFM motifs that captures 
the position interdependence is also introduced.
For more details regarding TFFM, 
please refer to \url{http://cisreg.cmmt.ubc.ca/TFFM/doc/}.

\Biocpkg{TFBSTools} aims to support all these functionalities
in the environment \R{}, except the external motif finding software,
such as \software{MEME} \cite{bailey_fitting_1994}. 

\section{\Rcode{S4} classes in TFBSTools}
The package is built around a number of \Rcode{S4} class of 
which the \Rclass{XMatrix}, 
\Rclass{SiteSet} classes are the most important.
The section will briefly explain most of them defined in \Biocpkg{TFBSTools}.

\subsection{XMatrix and its subclasses}
\Rclass{XMatrix} is a virtual class, 
which means no concrete objects can be created directly from it.
The subclass \Rclass{PFMatrix} is designed to store all the relevant information
for one raw position frequency matrix (PFM).
This object is compatible with one record from JASPAR database.
\Rclass{PWMatrix} is used to store a position weight matrix (PWM). 
Compared with \Rclass{PFMatrix}, it has one extra slot \Rcode{pseudocounts}.
\Rclass{ICMatrix} is used to store a information content matrix (ICM).
Compared with \Rclass{PWMatrix}, it has one extra slot \Rcode{schneider}.

The following examples demonstrate the creation of \Rclass{PFMatrix}, 
the conversions between these matrices and some assocated methods defined for these classes.

<<PFMatrix, eval=TRUE, cache=TRUE, results = "markup">>=
## PFMatrix construction; Not all of the slots need to be initialised.
pfm = PFMatrix(ID="MA0004.1", name="Arnt", matrixClass="Zipper-Type", strand="+",
        bg=c(A=0.25, C=0.25, G=0.25, T=0.25),
        tags=list(family="Helix-Loop-Helix", species="10090", 
                  tax_group="vertebrates",medline="7592839", type="SELEX", 
                  ACC="P53762", pazar_tf_id="TF0000003",
                  TFBSshape_ID="11", TFencyclopedia_ID="580"),
        profileMatrix=matrix(c(4L,  19L, 0L,  0L,  0L,  0L,
                               16L, 0L,  20L, 0L,  0L,  0L,
                               0L,  1L,  0L,  20L, 0L,  20L,
                               0L,  0L,  0L,  0L,  20L, 0L),
                             byrow=TRUE, nrow=4, 
                             dimnames=list(c("A", "C", "G", "T")))
        )

pfm 

## coerced to matrix
as.matrix(pfm)

## access the slots of pfm
ID(pfm)
name(pfm)
Matrix(pfm)
ncol(pfm)
length(pfm)

## convert a FPM to PWM, ICM
pwm = toPWM(pfm, type="log2probratio", pseudocounts=0.8,
            bg=c(A=0.25, C=0.25, G=0.25, T=0.25))

icm = toICM(pfm, pseudocounts=sqrt(rowSums(pfm)[1]), schneider=FALSE,
            bg=c(A=0.25, C=0.25, G=0.25, T=0.25))

## get the reverse complment matrix with all the same information except the strand.
pwmRevComp <- reverseComplement(pwm)
@

\subsection{XMatrixList and its subclasses}
\Rclass{XMatrixList} is used to store a set of \Rclass{XMatrix} objects.
Basically it is a SimpleList for easy manipulation the whole set of
\Rclass{XMatrix}. 
The concrete objects can be \Rclass{PFMatrix}, \Rclass{PWMatrix} and 
\Rclass{ICMatrix}.

<<PFMatrixList, eval=TRUE, results ="markup", cache=TRUE>>=
pfm2 = pfm
pfmList = PFMatrixList(pfm1=pfm, pfm2=pfm2, use.names=TRUE)
pfmList
names(pfmList)
@

\subsection{SiteSet, SiteSetList, SitePairSet and SitePairSetList}
The \Rclass{SiteSet} class is a container for storing a set of putative
transcription factor binding sites on a nucleotide sequence
(start, end, strand, score, pattern as a \Rclass{PWMatrix}, etc.)
from scaning a nucleotide sequence with the corresponding \Rclass{PWMatrix}.
Similarly, \Rclass{SiteSetList} stores a set of \Rclass{SiteSet} objects.

For holding the results returned from a pairwise alignment scaaning,
\Rclass{SitePairSet} and \Rclass{SitePairSetList} are provided.

More detailed examples of using these classes will be given in 
Section \ref{sec:Scanning};

\subsection{MotifSet}
This \Rclass{MotifSet} class is used to store the generated motifs from 
\textit{de novo} motif discovery software, such as 
\software{MEME} \cite{bailey_fitting_1994}.

\subsection{TFFM and its subclasses}
\Rclass{TFMM} is a virtual class and two classes 
\Rclass{TFFMFirst} and \Rclass{TFFMDetail} are derived from this virtual class.
Compared with \Rclass{PFMatrix} class, \Rclass{TFFM} has two extra slots
that store the emission distribution parameters and transition probabilities.
\Rclass{TFFMFirst} class stands for the first-order TFFMs, while
\Rclass{TFFMDetail} stands for the more detailed and descriptive TFFMs.

Although we provide the constructor functions for \Rclass{TFFM} class,
the \Rclass{TFFM} object is usually generated from reading a XML file from
the Python module \software{TFFM}.

<<TFFMRead, eval=TRUE, cache=TRUE, results = "markup">>=
  xmlFirst <- file.path(system.file("extdata", package="TFBSTools"),
                        "tffm_first_order.xml")
  tffmFirst <- readXMLTFFM(xmlFirst, type="First")
  tffm <- getPosProb(tffmFirst)
  
  xmlDetail <- file.path(system.file("extdata", package="TFBSTools"),
                         "tffm_detailed.xml")
  tffmDetail <- readXMLTFFM(xmlDetail, type="Detail")
  getPosProb(tffmDetail)
@


\section{Database interfaces for JASPAR2014 database}
This section will demonstrate how to operate on the JASPAR 2014 database.
JASPAR is a collection of transcription factor DNA-binding preferences, 
modeled as matrices. 
These can be converted into PWMs, used for scanning genomic sequences.
JASPAR is the only database with this scope where the data can be used 
with no restrictions (open-source).
A \Bioconductor{} experiment data package \Biocexptpkg{JASPAR2014} 
is provided with each release of JASPAR.

\subsection{Search JASPAR2014 database}
This search function fetches matrix data for all matrices in the database
matching criteria defined by the named arguments
and returns a PFMatrixList object.
For more search criterias, 
please see the help page for \Rfunction{getMatrixSet}.

<<searchDB, eval=TRUE, results = "markup", cache=TRUE>>=
suppressMessages(library(JASPAR2014))
opts = list()
opts[["species"]] = 9606
opts[["name"]] = "RUNX1"
#opts[["class"]] = "Ig-fold"
opts[["type"]] = "SELEX"
opts[["all_versions"]] = TRUE
PFMatrixList = getMatrixSet(JASPAR2014, opts)
PFMatrixList

opts2 = list()
opts2[["type"]] = "SELEX"
PFMatrixList2 = getMatrixSet(JASPAR2014, opts2)
PFMatrixList2
@

\subsection{Store, delete and initialize JASPAR2014 database}
We also provide some functions to initialize an empty JASPAR2014 
style database, 
store new \Rclass{PFMatrix} or \Rclass{PFMatrixList} into it,
or delete some records based on ID.
The backend of the database is \software{SQLite}.

<<operateDb, eval=TRUE, results="markup">>=
db = "myMatrixDb.sqlite"
initializeJASPARDB(db, version="2014")
data("MA0043")
storeMatrix(db, MA0043)
deleteMatrixHavingID(db,"MA0043.1")
file.remove(db)
@

\section{PFM, PWM and ICM methods}
This section will give an introduction of matrix operations, 
including conversion from PFM to PWM and ICM, profile matrices comparison,
dynamic random profile generation.

\subsection{PFM to PWM}
The method \Rfunction{toPWM} can convert PFM to PWM \cite{Wasserman:2004ec}. 
Optional parameters include \Rcode{type}, \Rcode{pseudocounts}, \Rcode{bg}. 
The implementation in this package is a bit different from that in \Biocpkg{Biostrings}.

First of all, \Rfunction{toPWM} allows the input matrix to have different column sums,
which means the count matrix can have an unequal number of sequences contributing
to each column. This scenario is rare, but exists in JASPAR SELEX data.

Second, we can specify customized \Rcode{pseudocounts}. 
\Rcode{pseudocounts} is necessary for correcting the small number of counts
or eliminating the zero values before log transformation.
In TFBS perl module, the square root of the number of sequences contributing to each column. 
However, it has been shown to too harsh \cite{nishida_pseudocounts_2009}.
Hence, a default value of 0.8 is used. 
Of course, it can be changed to other customized value or even different values for each column.

<<PWMmatrixMethods, eval=TRUE, results = "markup", cache=TRUE>>=
pwm = toPWM(pfm, pseudocounts=0.8)
pwm
@

\subsection{PFM to ICM}
The method \Rcode{toICM} can convert PFM to ICM \cite{schneider_information_1986}.
Besides the similar \Rcode{pseudocounts}, \Rcode{bg}, 
you can also choose to do the \Rcode{schneider} correction.

The information content matrix has a column sum between 0 (no base preference) 
and 2 (only 1 base used). 
Usually this information is used to plot sequence log.

How a PFM is converted to ICM: we have the PFM matrix $x$, 
base backrgound frequency $bg$, $pseudocounts$ for correction.

\begin{align}
  Z[j] &= \sum_{i=1}^{4} x[i,j] \\
  p[i,j] &= {(x[i,j] + bg[i] \times pseudocounts[j]) \over (Z[j] + \sum_{i} bg[i] \times pseudocounts[j]} \\
  D[j] &= \log_2{4} + \sum_{i=1}^{4} p[i,j]*\log{p[i,j]} \\ 
  ICM[i,j] &= p[i,j] \times D[j]
\end{align}

<<ICMmatrixMethods, eval=TRUE, results = "markup", cache=TRUE>>=
icm = toICM(pfm, pseudocounts=0.8, schneider=TRUE)
icm
@

To plot the sequence logo, we use the package \Biocpkg{seqlogo}.
In sequence logo, each position gives the information content obtained 
for each nucleotide.
The higher of the letter corresponding to a nucleotide, 
the larger information content and higher probability of getting that nucleotide
at that position.
<<seqLogo1, fig.show="hold", fig.width=6, fig.height=4, dpi=300>>=
seqLogo(icm)
@

\subsection{Align PFM to a custom matrix or IUPAC string}
In some cases, it is beneficial to assess similarity of existing profile matrices, 
such as JASPAR, to a newly discovered matrix
(as with using BLAST for sequence data comparison when using Genbank).

\Biocpkg{TFBSTools} provides tools for comparing pairs of PFMs, 
or a PFM with IUPAC string, using a modified Needleman-Wunsch algorithm 
\cite{sandelin_integrated_2003}.

<<rtl-PFMSimi, eval=TRUE, results = "markup", cache=TRUE>>=
## one to one comparison
data(MA0003.2)
data(MA0004.1)
pfmSubject = MA0003.2
pfmQuery =  MA0004.1
PFMSimilarity(pfmSubject, pfmQuery)

## one to several comparsion
PFMSimilarity(pfmList, pfmQuery)

## align IUPAC string
IUPACString = "ACGTMRWSYKVHDBN"
PFMSimilarity(pfmList, IUPACString)
@

\subsection{PWM similarity}
To measure the similarity of two PWM matrix in three measurements:
``normalised Euclidean distance'', ``Pearson correlation''
and ``Kullback Leibler divergence'' \cite{linhart_transcription_2008}.
Given two PWMs, $P^1$ and $P^2$, where l is the length. 
$P_{i,b}$ is the values in column i with base b.
The normalised Euclidean distance is computed in

\begin{equation}
  D(a,b) = {1 \over {\sqrt{2}l}} \cdot \sum_{i=1}^{l} \sqrt{\sum_{b \in {\{A,C,G,T\}}} (P_{i,b}^1-P_{i,b}^2)^2}
\end{equation}

This distance is between 0 (perfect identity) and 1 (complete dis-similarity).

The pearson correlation coefficient is computed in
\begin{equation}
  r(P^1, P^2) = {1 \over l} \cdot \sum_{i=1}^l {\sum_{b \in \{A,C,G,T\}} (P_{i,b}^1 - 0.25)(P_{i,b}^2-0.25) \over \sqrt{\sum_{b \in \{A,C,G,T\}} (P_{i,b}^1 - 0.25)^2 \cdot \sum_{b \in \{A,C,G,T\}} (P_{i,b}^2 - 0.25)^2}}.
\end{equation}

The Kullback-Leibler divergence is computed in 
\begin{equation}
  KL(P^1, P^2) = {1 \over {2l}} \cdot \sum_{i=1}^l \sum_{b \in \{A,C,G,T\}} (P_{i,b}^1\log{ P_{i,b}^1 \over P_{i,b}^2}+ P_{i,b}^2\log{P_{i,b}^2 \over {P_{i,b}^1}}).
\end{equation}

<<rtl-PWMSimilarity, eval=TRUE, results = "markup", cache=TRUE>>=
  data(MA0003.2)
  data(MA0004.1)
  pwm1 = toPWM(MA0003.2, type="prob")
  pwm2 = toPWM(MA0004.1, type="prob")
  PWMSimilarity(pwm1, pwm2, method="Euclidean")
  PWMSimilarity(pwm1, pwm2, method="Pearson")
  PWMSimilarity(pwm1, pwm2, method="KL")
@


\subsection{Dynamic random profile generation}
In this section, we will demonstrate the capability of random profile matrices generation with matrix permutation and probabilitis sampling.
In many computational/simulation studies, 
it is particularly desired to have a set of random matrices. 
Some cases includes the estimation of distance between putative TFBS
and transcription start site, the evaluation of comparison between matrices \cite{bryne_jaspar_2008}.
These random matrices are expected to have same statistical properties with
the selcted profiles, such as nucleotide content or information content.

The permutation method is relatively easy. 
It simply shuffles the columns either constrainted in each matrix, or columns almong all selected matrices.
The probabilistic sampling is more complicated and can be done in two steps:
\begin{enumerate}
  \item A Dirichlet multinomial mixture model is trained on all available matrices in JASPAR.
  \item Random columns are sampled from the posterior distribution of the trained Dirichlet model based on selected profiles.
\end{enumerate}

<<permuteMatrix, eval=TRUE, results = "markup", cache=TRUE>>=
## Matrice permutation
permuteMatrix(pfmQuery)
permuteMatrix(pfmList, type="intra")
permuteMatrix(pfmList, type="inter")
@

<<samplingMatrix, eval=FALSE, results = "markup", cache=TRUE>>=
## Dirichlet model training
data(MA0003.2)
data(MA0004.1)
pfmList <- PFMatrixList(pfm1=MA0003.2, pfm2=MA0004.1, use.names=TRUE)
dmmParameters <- dmmEM(pfmList, K=6, alg="C")
## Matrice sampling from trained Dirichlet model
pwmSampled <- rPWMDmm(MA0003.2, dmmParameters$alpha0, dmmParameters$pmix, 
                      N=1, W=6)
@

\section{TFFM methods}
\label{sec:TFFMMethods}
\subsection{The graphical representation of TFFM}
Basic PWMs can be graphically represented by the sequence logos shown above.
A novel graphical representation of TFFM is requied for 
taking the dinucleotide dependence into account.

For the upper part of the sequence logo,
we represent the nucleotide probabilities
at position $p$ for each possible nucleotide at position $p-1$.
Hence, each column represents a position within a TFBS and
each row the nucleotide probabilities found at that position.
Each row assumes a specific nucleotide has been emitted
by the previous hidden state.
The intersection between a column corresponding to position $p$ and
row corresponding to nucleotide $n$ gives the probabilities of
getting each nucleotide at position $p$ if $n$ has been seen at position $p-1$.
The opacity to represent the sequence logo is proportional to
the probablity of possible row to be used by the TFFM.


<<TFFMFirstseqLogo, eval=TRUE, cache=TRUE, results = "markup">>=
  ## sequence logo for First-order TFFM
  seqLogo(tffmFirst)
@
<<TFFMDetailseqLogo, eval=TRUE, cache=TRUE, results = "markup">>=
  ## sequence logo for detailed TFFM
  seqLogo(tffmDetail)
@

\section{Scan sequence and alignments with PWM pattern}
\label{sec:Scanning}
\subsection{searchSeq}
\Rfunction{searchSeq} scans a nucleotide sequence with the pattern represented in the PWM.
The strand argument controls which strand of the sequence will be searched.
When it is ``*'', both strands will be scanned.

A \Rclass{siteset} object will be returned which can be exported into
GFF3 or GFF2 format.
Empirical p-values for the match scores can be calculated by an exact method 
from \CRANpkg{TFMPvalue} or the distribution of sampled scores.

<<searchSeq, eval=TRUE, results = "markup", cache=TRUE>>=
library(Biostrings)
data(MA0003.2)
data(MA0004.1)
pwmList = PWMatrixList(MA0003.2=toPWM(MA0003.2), MA0004.1=toPWM(MA0004.1), 
                       use.names=TRUE)
subject = DNAString("GAATTCTCTCTTGTTGTAGTCTCTTGACAAAATG")
siteset = searchSeq(pwm, subject, seqname="seq1", min.score="60%", strand="*")

sitesetList = searchSeq(pwmList, subject, seqname="seq1",
                        min.score="60%", strand="*")


## generate gff2 or gff3 style output
head(writeGFF3(siteset))
head(writeGFF3(sitesetList))
head(writeGFF2(siteset))

## get the relative scores
relScore(siteset)
relScore(sitesetList)

## calculate the empirical p-values of the scores
pvalues(siteset, type="TFMPvalue")
pvalues(siteset, type="sampling")
@

\subsection{searchAln}
\Rfunction{searchAln} scans a pairwise alignment with the pattern 
represented by the PWM.
It reports only those hits that are present in equivalent positions of both sequences 
and exceed a specified threshold score in both, 
AND are found in regions of the alignment above the specified.

<<searchAln, eval=TRUE, results = "markup", cache=TRUE>>=
library(Biostrings)
data(MA0003.2)
pwm <- toPWM(MA0003.2)
aln1 <- DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATC---AAAGG---AAACGCAAAGTTTTCAAG")
aln2 <- DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")
sitePairSet <- searchAln(pwm, aln1, aln2, seqname1="seq1", seqname2="seq2",
                         min.score="50%", cutoff=0.5, 
                         strand="*", type="any")
## generate gff style output
head(writeGFF3(sitePairSet))
head(writeGFF2(sitePairSet))

## search the Axt alignment
library(CNEr)
axtFilesHg19DanRer7 <- file.path(system.file("extdata", package="CNEr"),
                                 "hg19.danRer7.net.axt")
axtHg19DanRer7 <- readAxt(axtFilesHg19DanRer7)
sitePairSet <-  searchAln(pwm, axtHg19DanRer7, min.score="80%",
                          windowSize=51L, cutoff=0.7, strand="*",
                          type="any", conservation=NULL, mc.cores=2)
GRangesTFBS <- toGRangesList(sitePairSet, axtHg19DanRer7)
GRangesTFBS$targetTFBS
GRangesTFBS$queryTFBS
@

\subsection{searchPairBSgenome}
\Rfunction{searchPairBSgenome} is designed to do the genome-wise phylogenetic footprinting.
Given two \Rclass{BSgenome}, a chain file for liftover from one genome to another,
\Rfunction{searchPairBSgenome} identifies the putative transcription factor binding sites
which are conserved in both genomes.
<<searchBSgenome, eval=FALSE, results = "hide">>=
library(rtracklayer)
library(JASPAR2014)
library(BSgenome.Hsapiens.UCSC.hg19)
library(BSgenome.Mmusculus.UCSC.mm10)
pfm <- getMatrixByID(JASPAR2014, ID="MA0004.1")
pwm <- toPWM(pfm)
chain <- import.chain("Downloads/hg19ToMm10.over.chain")
sitePairSet <- searchPairBSgenome(pwm, BSgenome.Hsapiens.UCSC.hg19,
                                 BSgenome.Mmusculus.UCSC.mm10,
                                 chr1="chr1", chr2="chr1",
                                 min.score="90%", strand="+", chain=chain)
@

\section{Use \textit{de novo} motif discovery software}
In this section, we will introduce wrapper functions for external motif discovery programs. 
So far, \software{MEME} is supported.
\subsection{\software{MEME}}
\Rfunction{runMEME} takes a \Rclass{DNAStringSet} or a set of \Rclass{characters} as input,
and returns a \Rclass{MotifSet} object.

<<MEME-wrapper, eval=FALSE, results = "hide">>=
motifSet <- runMEME(file.path(system.file("extdata", 
                                          package="TFBSTools"), "crp0.s"),
                    binary="meme",
                    arguments=list("-nmotifs"=3)
                   )
## Get the sites sequences and surrounding sequences
sitesSeq(motifSet, type="all")
## Get the sites sequences only
sitesSeq(motifSet, type="none")
consensusMatrix(motifSet)
@

\section{Session info}
The following is the session info that generated this vignette:
<<session-info>>=
  sessionInfo()
@


\newpage

\bibliography{TFBSTools}

\end{document}