1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
%\VignetteIndexEntry{Transcription factor binding site (TFBS) analysis with the "TFBSTools" package}
%\VignettePackage{TFBSTools}
%\VignetteEngine{knitr::knitr}
\documentclass[a4paper,11pt]{article}
<<setup, include=FALSE, cache=FALSE>>=
library(knitr)
## set global chunk options
opts_chunk$set(fig.path='figure/manual-', cache.path='cache/manual-', fig.align='center', fig.show='hold', par=TRUE)
## I use = but I can replace it with <-; set code/output width to be 68
options(replace.assign=TRUE, width=68, digits=4)
## tune details of base graphics (http://yihui.name/knitr/hooks)
knit_hooks$set(par=function(before, options, envir){
if (before && options$fig.show!='none') par(mar=c(4,4,.1,.1),cex.lab=.95,cex.axis=.9,mgp=c(2,.7,0),tcl=-.3)
})
@
<<style-knitr, eval=TRUE, echo=FALSE, results="asis">>=
BiocStyle::latex()
@
<<loadTFBSTools, echo=FALSE, warning=FALSE>>=
library("TFBSTools")
@
\usepackage{amssymb,amsmath}
\bioctitle{The \Biocpkg{TFBSTools} package overview}
\author{Ge Tan \footnote{ge.tan09@imperial.ac.uk}}
\date{Edited: Sep 2015; Compiled: \today}
\begin{document}
\maketitle
\tableofcontents
\section{Introduction}
Eukaryotic regulatory regions are characterized based a set of
discovered transcription factor binding sites (TFBSs),
which can be represented as sequence patterns
with various degree of degeneracy.
This \Biocpkg{TFBSTools} package is designed to be a compuational framework
for TFBSs analysis.
Based on the famous perl module TFBS \cite{lenhard_tfbs:_2002},
we extended the class definitions and enhanced implementations
in an interactive environment.
So far this package contains a set of integrated \R{} \Rcode{S4} style classes,
tools, JASPAR database interface functions.
Most approaches can be described in three sequential phases.
First, a pattern is generated for a set of target sequences
known to be bound by a specific transcription factor.
Second, a set of DNA sequences are analyzed to determine
the locations of sequences consistent with the described binding pattern.
Finally, in advanced cases, predictive statistical models of regulatory
regions are constructed based on mutiple occurrences of the detected
patterns.
Since JASPAR2016, the next generation of
transcription factor binding site, TFFM \cite{mathelier_next_2013},
was introduced into JASPAR for the first time.
Now \Biocpkg{TFBSTools} also supports the manipulation of TFFM.
TFFM is based on hidden Markov Model (HMM).
The biggest advantage of TFFM over basic PWM is that
it can model position interdependence within TFBSs and variable motif length.
A novel graphical representation of the TFFM motifs that captures
the position interdependence is also introduced.
For more details regarding TFFM,
please refer to \url{http://cisreg.cmmt.ubc.ca/TFFM/doc/}.
\Biocpkg{TFBSTools} aims to support all these functionalities
in the environment \R{}, except the external motif finding software,
such as \software{MEME} \cite{bailey_fitting_1994}.
\section{\Rcode{S4} classes in TFBSTools}
The package is built around a number of \Rcode{S4} class of
which the \Rclass{XMatrix},
\Rclass{SiteSet} classes are the most important.
The section will briefly explain most of them defined in \Biocpkg{TFBSTools}.
\subsection{XMatrix and its subclasses}
\Rclass{XMatrix} is a virtual class,
which means no concrete objects can be created directly from it.
The subclass \Rclass{PFMatrix} is designed to store all the relevant information
for one raw position frequency matrix (PFM).
This object is compatible with one record from JASPAR database.
\Rclass{PWMatrix} is used to store a position weight matrix (PWM).
Compared with \Rclass{PFMatrix}, it has one extra slot \Rcode{pseudocounts}.
\Rclass{ICMatrix} is used to store a information content matrix (ICM).
Compared with \Rclass{PWMatrix}, it has one extra slot \Rcode{schneider}.
The following examples demonstrate the creation of \Rclass{PFMatrix},
the conversions between these matrices and some assocated methods defined for these classes.
<<PFMatrix, eval=TRUE, cache=TRUE, results = "markup">>=
## PFMatrix construction; Not all of the slots need to be initialised.
pfm = PFMatrix(ID="MA0004.1", name="Arnt", matrixClass="Zipper-Type", strand="+",
bg=c(A=0.25, C=0.25, G=0.25, T=0.25),
tags=list(family="Helix-Loop-Helix", species="10090",
tax_group="vertebrates",medline="7592839", type="SELEX",
ACC="P53762", pazar_tf_id="TF0000003",
TFBSshape_ID="11", TFencyclopedia_ID="580"),
profileMatrix=matrix(c(4L, 19L, 0L, 0L, 0L, 0L,
16L, 0L, 20L, 0L, 0L, 0L,
0L, 1L, 0L, 20L, 0L, 20L,
0L, 0L, 0L, 0L, 20L, 0L),
byrow=TRUE, nrow=4,
dimnames=list(c("A", "C", "G", "T")))
)
pfm
## coerced to matrix
as.matrix(pfm)
## access the slots of pfm
ID(pfm)
name(pfm)
Matrix(pfm)
ncol(pfm)
length(pfm)
## convert a FPM to PWM, ICM
pwm = toPWM(pfm, type="log2probratio", pseudocounts=0.8,
bg=c(A=0.25, C=0.25, G=0.25, T=0.25))
icm = toICM(pfm, pseudocounts=sqrt(rowSums(pfm)[1]), schneider=FALSE,
bg=c(A=0.25, C=0.25, G=0.25, T=0.25))
## get the reverse complment matrix with all the same information except the strand.
pwmRevComp <- reverseComplement(pwm)
@
\subsection{XMatrixList and its subclasses}
\Rclass{XMatrixList} is used to store a set of \Rclass{XMatrix} objects.
Basically it is a SimpleList for easy manipulation the whole set of
\Rclass{XMatrix}.
The concrete objects can be \Rclass{PFMatrix}, \Rclass{PWMatrix} and
\Rclass{ICMatrix}.
<<PFMatrixList, eval=TRUE, results ="markup", cache=TRUE>>=
pfm2 = pfm
pfmList = PFMatrixList(pfm1=pfm, pfm2=pfm2, use.names=TRUE)
pfmList
names(pfmList)
@
\subsection{SiteSet, SiteSetList, SitePairSet and SitePairSetList}
The \Rclass{SiteSet} class is a container for storing a set of putative
transcription factor binding sites on a nucleotide sequence
(start, end, strand, score, pattern as a \Rclass{PWMatrix}, etc.)
from scaning a nucleotide sequence with the corresponding \Rclass{PWMatrix}.
Similarly, \Rclass{SiteSetList} stores a set of \Rclass{SiteSet} objects.
For holding the results returned from a pairwise alignment scaaning,
\Rclass{SitePairSet} and \Rclass{SitePairSetList} are provided.
More detailed examples of using these classes will be given in
Section \ref{sec:Scanning};
\subsection{MotifSet}
This \Rclass{MotifSet} class is used to store the generated motifs from
\textit{de novo} motif discovery software, such as
\software{MEME} \cite{bailey_fitting_1994}.
\subsection{TFFM and its subclasses}
\Rclass{TFMM} is a virtual class and two classes
\Rclass{TFFMFirst} and \Rclass{TFFMDetail} are derived from this virtual class.
Compared with \Rclass{PFMatrix} class, \Rclass{TFFM} has two extra slots
that store the emission distribution parameters and transition probabilities.
\Rclass{TFFMFirst} class stands for the first-order TFFMs, while
\Rclass{TFFMDetail} stands for the more detailed and descriptive TFFMs.
Although we provide the constructor functions for \Rclass{TFFM} class,
the \Rclass{TFFM} object is usually generated from reading a XML file from
the Python module \software{TFFM}.
<<TFFMRead, eval=TRUE, cache=TRUE, results = "markup">>=
xmlFirst <- file.path(system.file("extdata", package="TFBSTools"),
"tffm_first_order.xml")
tffmFirst <- readXMLTFFM(xmlFirst, type="First")
tffm <- getPosProb(tffmFirst)
xmlDetail <- file.path(system.file("extdata", package="TFBSTools"),
"tffm_detailed.xml")
tffmDetail <- readXMLTFFM(xmlDetail, type="Detail")
getPosProb(tffmDetail)
@
\section{Database interfaces for JASPAR2014 database}
This section will demonstrate how to operate on the JASPAR 2014 database.
JASPAR is a collection of transcription factor DNA-binding preferences,
modeled as matrices.
These can be converted into PWMs, used for scanning genomic sequences.
JASPAR is the only database with this scope where the data can be used
with no restrictions (open-source).
A \Bioconductor{} experiment data package \Biocexptpkg{JASPAR2014}
is provided with each release of JASPAR.
\subsection{Search JASPAR2014 database}
This search function fetches matrix data for all matrices in the database
matching criteria defined by the named arguments
and returns a PFMatrixList object.
For more search criterias,
please see the help page for \Rfunction{getMatrixSet}.
<<searchDB, eval=TRUE, results = "markup", cache=TRUE>>=
suppressMessages(library(JASPAR2014))
opts = list()
opts[["species"]] = 9606
opts[["name"]] = "RUNX1"
#opts[["class"]] = "Ig-fold"
opts[["type"]] = "SELEX"
opts[["all_versions"]] = TRUE
PFMatrixList = getMatrixSet(JASPAR2014, opts)
PFMatrixList
opts2 = list()
opts2[["type"]] = "SELEX"
PFMatrixList2 = getMatrixSet(JASPAR2014, opts2)
PFMatrixList2
@
\subsection{Store, delete and initialize JASPAR2014 database}
We also provide some functions to initialize an empty JASPAR2014
style database,
store new \Rclass{PFMatrix} or \Rclass{PFMatrixList} into it,
or delete some records based on ID.
The backend of the database is \software{SQLite}.
<<operateDb, eval=TRUE, results="markup">>=
db = "myMatrixDb.sqlite"
initializeJASPARDB(db, version="2014")
data("MA0043")
storeMatrix(db, MA0043)
deleteMatrixHavingID(db,"MA0043.1")
file.remove(db)
@
\section{PFM, PWM and ICM methods}
This section will give an introduction of matrix operations,
including conversion from PFM to PWM and ICM, profile matrices comparison,
dynamic random profile generation.
\subsection{PFM to PWM}
The method \Rfunction{toPWM} can convert PFM to PWM \cite{Wasserman:2004ec}.
Optional parameters include \Rcode{type}, \Rcode{pseudocounts}, \Rcode{bg}.
The implementation in this package is a bit different from that in \Biocpkg{Biostrings}.
First of all, \Rfunction{toPWM} allows the input matrix to have different column sums,
which means the count matrix can have an unequal number of sequences contributing
to each column. This scenario is rare, but exists in JASPAR SELEX data.
Second, we can specify customized \Rcode{pseudocounts}.
\Rcode{pseudocounts} is necessary for correcting the small number of counts
or eliminating the zero values before log transformation.
In TFBS perl module, the square root of the number of sequences contributing to each column.
However, it has been shown to too harsh \cite{nishida_pseudocounts_2009}.
Hence, a default value of 0.8 is used.
Of course, it can be changed to other customized value or even different values for each column.
<<PWMmatrixMethods, eval=TRUE, results = "markup", cache=TRUE>>=
pwm = toPWM(pfm, pseudocounts=0.8)
pwm
@
\subsection{PFM to ICM}
The method \Rcode{toICM} can convert PFM to ICM \cite{schneider_information_1986}.
Besides the similar \Rcode{pseudocounts}, \Rcode{bg},
you can also choose to do the \Rcode{schneider} correction.
The information content matrix has a column sum between 0 (no base preference)
and 2 (only 1 base used).
Usually this information is used to plot sequence log.
How a PFM is converted to ICM: we have the PFM matrix $x$,
base backrgound frequency $bg$, $pseudocounts$ for correction.
\begin{align}
Z[j] &= \sum_{i=1}^{4} x[i,j] \\
p[i,j] &= {(x[i,j] + bg[i] \times pseudocounts[j]) \over (Z[j] + \sum_{i} bg[i] \times pseudocounts[j]} \\
D[j] &= \log_2{4} + \sum_{i=1}^{4} p[i,j]*\log{p[i,j]} \\
ICM[i,j] &= p[i,j] \times D[j]
\end{align}
<<ICMmatrixMethods, eval=TRUE, results = "markup", cache=TRUE>>=
icm = toICM(pfm, pseudocounts=0.8, schneider=TRUE)
icm
@
To plot the sequence logo, we use the package \Biocpkg{seqlogo}.
In sequence logo, each position gives the information content obtained
for each nucleotide.
The higher of the letter corresponding to a nucleotide,
the larger information content and higher probability of getting that nucleotide
at that position.
<<seqLogo1, fig.show="hold", fig.width=6, fig.height=4, dpi=300>>=
seqLogo(icm)
@
\subsection{Align PFM to a custom matrix or IUPAC string}
In some cases, it is beneficial to assess similarity of existing profile matrices,
such as JASPAR, to a newly discovered matrix
(as with using BLAST for sequence data comparison when using Genbank).
\Biocpkg{TFBSTools} provides tools for comparing pairs of PFMs,
or a PFM with IUPAC string, using a modified Needleman-Wunsch algorithm
\cite{sandelin_integrated_2003}.
<<rtl-PFMSimi, eval=TRUE, results = "markup", cache=TRUE>>=
## one to one comparison
data(MA0003.2)
data(MA0004.1)
pfmSubject = MA0003.2
pfmQuery = MA0004.1
PFMSimilarity(pfmSubject, pfmQuery)
## one to several comparsion
PFMSimilarity(pfmList, pfmQuery)
## align IUPAC string
IUPACString = "ACGTMRWSYKVHDBN"
PFMSimilarity(pfmList, IUPACString)
@
\subsection{PWM similarity}
To measure the similarity of two PWM matrix in three measurements:
``normalised Euclidean distance'', ``Pearson correlation''
and ``Kullback Leibler divergence'' \cite{linhart_transcription_2008}.
Given two PWMs, $P^1$ and $P^2$, where l is the length.
$P_{i,b}$ is the values in column i with base b.
The normalised Euclidean distance is computed in
\begin{equation}
D(a,b) = {1 \over {\sqrt{2}l}} \cdot \sum_{i=1}^{l} \sqrt{\sum_{b \in {\{A,C,G,T\}}} (P_{i,b}^1-P_{i,b}^2)^2}
\end{equation}
This distance is between 0 (perfect identity) and 1 (complete dis-similarity).
The pearson correlation coefficient is computed in
\begin{equation}
r(P^1, P^2) = {1 \over l} \cdot \sum_{i=1}^l {\sum_{b \in \{A,C,G,T\}} (P_{i,b}^1 - 0.25)(P_{i,b}^2-0.25) \over \sqrt{\sum_{b \in \{A,C,G,T\}} (P_{i,b}^1 - 0.25)^2 \cdot \sum_{b \in \{A,C,G,T\}} (P_{i,b}^2 - 0.25)^2}}.
\end{equation}
The Kullback-Leibler divergence is computed in
\begin{equation}
KL(P^1, P^2) = {1 \over {2l}} \cdot \sum_{i=1}^l \sum_{b \in \{A,C,G,T\}} (P_{i,b}^1\log{ P_{i,b}^1 \over P_{i,b}^2}+ P_{i,b}^2\log{P_{i,b}^2 \over {P_{i,b}^1}}).
\end{equation}
<<rtl-PWMSimilarity, eval=TRUE, results = "markup", cache=TRUE>>=
data(MA0003.2)
data(MA0004.1)
pwm1 = toPWM(MA0003.2, type="prob")
pwm2 = toPWM(MA0004.1, type="prob")
PWMSimilarity(pwm1, pwm2, method="Euclidean")
PWMSimilarity(pwm1, pwm2, method="Pearson")
PWMSimilarity(pwm1, pwm2, method="KL")
@
\subsection{Dynamic random profile generation}
In this section, we will demonstrate the capability of random profile matrices generation with matrix permutation and probabilitis sampling.
In many computational/simulation studies,
it is particularly desired to have a set of random matrices.
Some cases includes the estimation of distance between putative TFBS
and transcription start site, the evaluation of comparison between matrices \cite{bryne_jaspar_2008}.
These random matrices are expected to have same statistical properties with
the selcted profiles, such as nucleotide content or information content.
The permutation method is relatively easy.
It simply shuffles the columns either constrainted in each matrix, or columns almong all selected matrices.
The probabilistic sampling is more complicated and can be done in two steps:
\begin{enumerate}
\item A Dirichlet multinomial mixture model is trained on all available matrices in JASPAR.
\item Random columns are sampled from the posterior distribution of the trained Dirichlet model based on selected profiles.
\end{enumerate}
<<permuteMatrix, eval=TRUE, results = "markup", cache=TRUE>>=
## Matrice permutation
permuteMatrix(pfmQuery)
permuteMatrix(pfmList, type="intra")
permuteMatrix(pfmList, type="inter")
@
<<samplingMatrix, eval=FALSE, results = "markup", cache=TRUE>>=
## Dirichlet model training
data(MA0003.2)
data(MA0004.1)
pfmList <- PFMatrixList(pfm1=MA0003.2, pfm2=MA0004.1, use.names=TRUE)
dmmParameters <- dmmEM(pfmList, K=6, alg="C")
## Matrice sampling from trained Dirichlet model
pwmSampled <- rPWMDmm(MA0003.2, dmmParameters$alpha0, dmmParameters$pmix,
N=1, W=6)
@
\section{TFFM methods}
\label{sec:TFFMMethods}
\subsection{The graphical representation of TFFM}
Basic PWMs can be graphically represented by the sequence logos shown above.
A novel graphical representation of TFFM is requied for
taking the dinucleotide dependence into account.
For the upper part of the sequence logo,
we represent the nucleotide probabilities
at position $p$ for each possible nucleotide at position $p-1$.
Hence, each column represents a position within a TFBS and
each row the nucleotide probabilities found at that position.
Each row assumes a specific nucleotide has been emitted
by the previous hidden state.
The intersection between a column corresponding to position $p$ and
row corresponding to nucleotide $n$ gives the probabilities of
getting each nucleotide at position $p$ if $n$ has been seen at position $p-1$.
The opacity to represent the sequence logo is proportional to
the probablity of possible row to be used by the TFFM.
<<TFFMFirstseqLogo, eval=TRUE, cache=TRUE, results = "markup">>=
## sequence logo for First-order TFFM
seqLogo(tffmFirst)
@
<<TFFMDetailseqLogo, eval=TRUE, cache=TRUE, results = "markup">>=
## sequence logo for detailed TFFM
seqLogo(tffmDetail)
@
\section{Scan sequence and alignments with PWM pattern}
\label{sec:Scanning}
\subsection{searchSeq}
\Rfunction{searchSeq} scans a nucleotide sequence with the pattern represented in the PWM.
The strand argument controls which strand of the sequence will be searched.
When it is ``*'', both strands will be scanned.
A \Rclass{siteset} object will be returned which can be exported into
GFF3 or GFF2 format.
Empirical p-values for the match scores can be calculated by an exact method
from \CRANpkg{TFMPvalue} or the distribution of sampled scores.
<<searchSeq, eval=TRUE, results = "markup", cache=TRUE>>=
library(Biostrings)
data(MA0003.2)
data(MA0004.1)
pwmList = PWMatrixList(MA0003.2=toPWM(MA0003.2), MA0004.1=toPWM(MA0004.1),
use.names=TRUE)
subject = DNAString("GAATTCTCTCTTGTTGTAGTCTCTTGACAAAATG")
siteset = searchSeq(pwm, subject, seqname="seq1", min.score="60%", strand="*")
sitesetList = searchSeq(pwmList, subject, seqname="seq1",
min.score="60%", strand="*")
## generate gff2 or gff3 style output
head(writeGFF3(siteset))
head(writeGFF3(sitesetList))
head(writeGFF2(siteset))
## get the relative scores
relScore(siteset)
relScore(sitesetList)
## calculate the empirical p-values of the scores
pvalues(siteset, type="TFMPvalue")
pvalues(siteset, type="sampling")
@
\subsection{searchAln}
\Rfunction{searchAln} scans a pairwise alignment with the pattern
represented by the PWM.
It reports only those hits that are present in equivalent positions of both sequences
and exceed a specified threshold score in both,
AND are found in regions of the alignment above the specified.
<<searchAln, eval=TRUE, results = "markup", cache=TRUE>>=
library(Biostrings)
data(MA0003.2)
pwm <- toPWM(MA0003.2)
aln1 <- DNAString("ACTTCACCAGCTCCCTGGCGGTAAGTTGATC---AAAGG---AAACGCAAAGTTTTCAAG")
aln2 <- DNAString("GTTTCACTACTTCCTTTCGGGTAAGTAAATATATAAATATATAAAAATATAATTTTCATC")
sitePairSet <- searchAln(pwm, aln1, aln2, seqname1="seq1", seqname2="seq2",
min.score="50%", cutoff=0.5,
strand="*", type="any")
## generate gff style output
head(writeGFF3(sitePairSet))
head(writeGFF2(sitePairSet))
## search the Axt alignment
library(CNEr)
axtFilesHg19DanRer7 <- file.path(system.file("extdata", package="CNEr"),
"hg19.danRer7.net.axt")
axtHg19DanRer7 <- readAxt(axtFilesHg19DanRer7)
sitePairSet <- searchAln(pwm, axtHg19DanRer7, min.score="80%",
windowSize=51L, cutoff=0.7, strand="*",
type="any", conservation=NULL, mc.cores=2)
GRangesTFBS <- toGRangesList(sitePairSet, axtHg19DanRer7)
GRangesTFBS$targetTFBS
GRangesTFBS$queryTFBS
@
\subsection{searchPairBSgenome}
\Rfunction{searchPairBSgenome} is designed to do the genome-wise phylogenetic footprinting.
Given two \Rclass{BSgenome}, a chain file for liftover from one genome to another,
\Rfunction{searchPairBSgenome} identifies the putative transcription factor binding sites
which are conserved in both genomes.
<<searchBSgenome, eval=FALSE, results = "hide">>=
library(rtracklayer)
library(JASPAR2014)
library(BSgenome.Hsapiens.UCSC.hg19)
library(BSgenome.Mmusculus.UCSC.mm10)
pfm <- getMatrixByID(JASPAR2014, ID="MA0004.1")
pwm <- toPWM(pfm)
chain <- import.chain("Downloads/hg19ToMm10.over.chain")
sitePairSet <- searchPairBSgenome(pwm, BSgenome.Hsapiens.UCSC.hg19,
BSgenome.Mmusculus.UCSC.mm10,
chr1="chr1", chr2="chr1",
min.score="90%", strand="+", chain=chain)
@
\section{Use \textit{de novo} motif discovery software}
In this section, we will introduce wrapper functions for external motif discovery programs.
So far, \software{MEME} is supported.
\subsection{\software{MEME}}
\Rfunction{runMEME} takes a \Rclass{DNAStringSet} or a set of \Rclass{characters} as input,
and returns a \Rclass{MotifSet} object.
<<MEME-wrapper, eval=FALSE, results = "hide">>=
motifSet <- runMEME(file.path(system.file("extdata",
package="TFBSTools"), "crp0.s"),
binary="meme",
arguments=list("-nmotifs"=3)
)
## Get the sites sequences and surrounding sequences
sitesSeq(motifSet, type="all")
## Get the sites sequences only
sitesSeq(motifSet, type="none")
consensusMatrix(motifSet)
@
\section{Session info}
The following is the session info that generated this vignette:
<<session-info>>=
sessionInfo()
@
\newpage
\bibliography{TFBSTools}
\end{document}
|