1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
#include "R.h"
#include "Rdefines.h"
#include "Rinternals.h"
#include <string.h>
struct entry
// box in score-table
{
float score; // the dynamically best-score-yet
float cell_score; // real score in this position
struct entry *father; // pointer to father box
int insert; // insertion, 1=yes, 0 =no
int deletion; // deletion, 1=yes, 0 =no
int align[2]; // first is matrix_1 pos(i) ,second is second matrix (j)
int aln_length; // dynamically extended length of alignment so far
char kind;
};
struct alignment
{
float best_score; // the final score
int length; // the alignment length
int gaps; // number of gaps
int over_string[30]; // string matrix 1 in alignment (gap represented with -1)
int under_string[30]; // string matrix2 in alignment
};
void reverseMatrix(float matrix1[][4], float matrix2[][4], int width){
// reverse the matrix1 and put the results in matrix2
int i,j;
for(i=1; i<=width; i++){
for(j=0; j<=3; j++){
matrix2[width-i+1][3-j] = matrix1[i][j];
}
}
}
void printMatrix(float matrix[][4], int width){
// print a matrix to R console
int i, j;
for(i=0; i<=width; i++){
for(j=0; j<=3; j++){
Rprintf("%f\t", matrix[i][j]);
}
Rprintf("\n");
}
}
struct alignment *score(int width1, int width2, float matrix1[][4], float matrix2[][4], double open_penalty, double ext_penalty){
// scoring function, the modified Needleman algorithm
struct entry F[width1+1][width2+1]; // matrix for storing ungapped alignments
struct entry I[width1+1][width2+1]; // matrix for insertions
struct entry B[width1+1][width2+1]; // matrix for deletions
struct entry E[width1+1][width2+1]; // matrix for ending alignment after gap
int i,j; // counter for first profile, and later some other stuff; counter for second profile,
float nogap_score; // score in a position without gaps
float start_insert; // variables for cmparing scores, basically
float extend_insert;
float start_deletion;
float extend_deletion;
float max_score=0;
float end_insert;
float end_deletion;
float end_continue;
float sum_i; // counter for sums in a position in profile1
float sum_j; // counter for sums in a position in profile2
int align_i[40]; // keeping alignment for printing
int align_j[40];
int align_length; // length of alignment
int counter; // another counter variable
int number_of_gaps=0; // number of gaps
int nucleotide; // nucleotide, 0-3 =ACGT
for(i=0; i<=width1; i++){
for(j=0; j<=width2; j++){
F[i][j].score = 0;
F[i][j].cell_score = 0;
F[i][j].insert = 0;
F[i][j].deletion = 0;
F[i][j].father = NULL;
F[i][j].align[0] = 0;
F[i][j].align[1] = 0;
F[i][j].aln_length = 0;
F[i][j].kind = 'F';
I[i][j].score = 0;
I[i][j].cell_score = 0;
I[i][j].insert = 0;
I[i][j].deletion = 0;
I[i][j].father = NULL;
I[i][j].align[0] = 0;
I[i][j].align[1] = 0;
I[i][j].aln_length = 0;
I[i][j].kind = 'I';
B[i][j].score = 0;
B[i][j].cell_score = 0;
B[i][j].insert = 0;
B[i][j].deletion = 0;
B[i][j].father = NULL;
B[i][j].align[0] = 0;
B[i][j].align[1] = 0;
B[i][j].aln_length = 0;
B[i][j].kind = 'B';
E[i][j].score = 0;
E[i][j].cell_score = 0;
E[i][j].insert = 0;
E[i][j].deletion = 0;
E[i][j].father = NULL;
E[i][j].align[0] = 0;
E[i][j].align[1] = 0;
E[i][j].aln_length = 0;
E[i][j].kind = 'E';
}
}
struct entry *best_pntr; // pointer to the best entry so far
//best_pntr = &F[0][0];
/*------------scoring engine------------*/
for(i=1; i<=width1; i++){ //go over all pos vs all pos
for(j=1; j<=width2; j++){
nogap_score=0; // initialized
sum_i = 0; // calculate the sum of the position
sum_j = 0;
for (nucleotide=0; nucleotide<=3; ++nucleotide){
// go through nucleotides in position
nogap_score += pow((matrix1[i][nucleotide] - matrix2[j][nucleotide]), 2);
sum_i += matrix1[i][nucleotide];
sum_j += matrix2[j][nucleotide];
}
nogap_score = 2 - nogap_score;
// define the three different scores
F[i][j].score = nogap_score + F[i-1][j-1].score; // define non-gapped alignment score
F[i][j].father= &F[i-1][j-1];
F[i][j].cell_score = nogap_score;
F[i][j].align[0] = i;
F[i][j].align[1] = j;
if(F[i][j].score >= max_score){ // check if best score yet
max_score = F[i][j].score;
best_pntr = &F[i][j];
}
// inserts in profile1 (i) profile
start_insert = F[i-1][j].score - open_penalty; // define cost to open gap-insertion from here
extend_insert = F[i-1][j].score - ext_penalty; // cost of extending gap-insertion from here
if(start_insert >= extend_insert){ // take the best one
I[i][j].score = start_insert;
I[i][j].father= &F[i-1][j];
I[i][j].cell_score = - open_penalty;
I[i][j].insert = 1;
I[i][j].align[0] = i;
I[i][j].align[1] = 0;
}else{
I[i][j].score = extend_insert;
I[i][j].father = &I[i-1][j];
I[i][j].cell_score = - ext_penalty;
I[i][j].insert = 1;
I[i][j].align[0] = i;
I[i][j].align[1] = 0;
}
if(I[i][j].score >= max_score){ // update if best score yet
max_score = I[i][j].score;
best_pntr = &I[i][j];
}
// deletions in profile1 (i) profile
start_deletion = F[i][j-1].score - open_penalty; // open deletion gap
extend_deletion = B[i][j-1].score - ext_penalty; // extend deletion gap
if(start_deletion >= extend_deletion){ // check which one is highest
B[i][j].score = start_deletion;
B[i][j].father = &F[i][j-1];
B[i][j].cell_score = - open_penalty;
B[i][j].deletion = 1;
B[i][j].align[0] = 0;
B[i][j].align[1] = j;
}else{
B[i][j].score = extend_deletion;
B[i][j].father = &B[i][j-1];
B[i][j].cell_score = - ext_penalty;
B[i][j].deletion = 1;
B[i][j].align[0] = 0;
B[i][j].align[1] = j;
}
if(B[i][j].score >= max_score){ // update if best sofar
max_score = B[i][j].score;
best_pntr = &B[i][j];
}
// end alignment after gap
end_insert = I[i-1][j-1].score + nogap_score; // start real alignment after insertion-gap
end_deletion = B[i-1][j-1].score + nogap_score; // start real alignent after deletion-gap
end_continue = E[i-1][j-1].score + nogap_score; // continue real alignment
if(end_insert >= end_deletion && end_insert >= end_continue ){ // check which score is highest
E[i][j].score = end_insert;
E[i][j].father = &I[i-1][j-1];
E[i][j].cell_score = nogap_score;
E[i][j].align[0] = i;
E[i][j].align[1] = j;
}else if(end_deletion >= end_insert && end_deletion >= end_continue){
E[i][j].score = end_deletion;
E[i][j].father = &B[i-1][j-1];
E[i][j].cell_score = nogap_score;
E[i][j].align[0] = i;
E[i][j].align[1] = j;
}else{
E[i][j].score = end_continue;
E[i][j].father = &E[i-1][j-1];
E[i][j].cell_score = nogap_score;
E[i][j].align[0] = i;
E[i][j].align[1] = j;
}
if(E[i][j].score > max_score){ // update if highest yet
max_score = E[i][j].score;
best_pntr = &E[i][j];
}
}
}
/*-----------------function for walking through the alignment------------*/
// starting with the best scoring cell, going back throgh the father-pointers
struct alignment *align;
align->best_score = max_score;
counter = 0;
align_length = 0;
struct entry *current_pntr = best_pntr; // for walking, start with the best score
while (current_pntr->father != NULL){ // while the father of the current pointer exists, walk through the best posible alignment
align_i[counter] = current_pntr->align[0];
align_j[counter]= current_pntr->align[1];
align_length++;
current_pntr = current_pntr->father;
counter ++;
}
align->length= align_length;
for(i=align_length-1; i>=0; --i){ // walk through alignment for printing, first profile
align->over_string[i] = align_i[align_length-i-1]; // fill in alignment in alignment-object
if(align_i[i] == 0){ // count the number of gaps
number_of_gaps = number_of_gaps + 1;
}
}
for(i=align_length-1; i>=0; --i){ // walk through alignment for printing, second profile
align->under_string[i] = align_j[align_length-i-1]; // fill in alignment in alignment-object
if(align_j[i] == 0){ // count the number of gaps
number_of_gaps =number_of_gaps +1;
}
}
align->gaps = number_of_gaps; // fill in number of gaps in alignment-object
return align;
}
/* ----------------.Call() Entry points: the main matrixAligner function ------------- */
SEXP matrixAligner(SEXP matrixQuery, SEXP matrixSubject, SEXP open_penalty, SEXP ext_penalty){
// matrixQuery and matrixSubject are matrix of integers.
// open_penalty and ext_penalty are numerics.
int vidd1; // column number of matrixQuery
int vidd2; // column number of matrixSubject
int i, j;
vidd1 = INTEGER(GET_DIM(matrixQuery))[1];
vidd2 = INTEGER(GET_DIM(matrixSubject))[1];
Rprintf("the matrixQuery dim is %d\n", vidd1);
Rprintf("the matrixSubject dim is %d\n", vidd2);
// for simplicity with old code, but at the cost of assignment
// make another matrix of profile with additional column so make pos 1 is index 1 in the matrix.
float matris1[vidd1+1][4];
float matris2[vidd2+1][4];
float matris3[vidd2+1][4];
float position_weights[vidd1+1]; // stores the number of sequences in each position
float position_weights2[vidd2+1];
// fill the first row of matris1 with 0 and position_weights with 0
for(j=0; j<=3; j++){
matris1[0][j] = 0;
matris2[0][j] = 0;
matris3[0][j] = 0;
}
for(i=0; i<=vidd1+1; i++){
position_weights[i] = 0;
position_weights2[i] = 0;
}
// fill in the matrix with these data:
for(i=1; i<=vidd1; i++){
for(j=0; j<=3; j++){
matris1[i][j] = (float)INTEGER(matrixQuery)[(i-1)*4+j];
position_weights[i] += matris1[i][j];
}
}
for(i=1; i<=vidd2; i++){
for(j=0; j<=3; j++){
matris2[i][j] = (float)INTEGER(matrixSubject)[(i-1)*4+j];
position_weights2[i] += matris2[i][j];
}
}
// normalize the data
for(j=0; j<=3; j++){
for(i=1; i<=vidd1; i++){
matris1[i][j] = matris1[i][j] / position_weights[i];
}
for(i=1; i<=vidd2; i++){
matris2[i][j] = matris2[i][j] / position_weights2[i];
}
}
reverseMatrix(matris2, matris3, vidd2);// reverse the second profile for +- scoring
//Rprintf("the position weight is %f\n", matris2[1][0]);
//Rprintf("the position weight is %f\n", matris2[1][2]);
printMatrix(matris2, vidd2);
Rprintf("The matris3 is \n");
printMatrix(matris3, vidd2);
struct alignment *score1, *score2;
score1 = score(vidd1, vidd2, matris1, matris2, REAL(open_penalty)[0], REAL(ext_penalty)[0]);
score2 = score(vidd1, vidd2, matris1, matris3, REAL(open_penalty)[0], REAL(ext_penalty)[0]);
Rprintf("open penalty %f\n", REAL(open_penalty)[0]);
Rprintf("extend penalty %f\n", REAL(ext_penalty)[0]);
//if(score1->best_score > score2->best_score){ // what final score is highest?
Rprintf("The best score is %f\n", score1->best_score);
//}else{
Rprintf("the best score2 is %f\n", score2->best_score);
//}
return R_NilValue;
}
|