1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
#' Obtains logistic fits for presence/absence and fitted probabilities of a zero occurring.
#'
#' This function is used to derive weights for feature-wise compositional estimates. Our (default)
#' intention is to derive these based on average occurrences across the dataset, as just a function
#' of sample depth, and not with particular relevance to groups.
#' @param mat count matrix
#' @param hdesign design matrix for the logistic; the default is usually sufficient.
#' @param pres.abs.mod TRUE if glm regression is for presence or absence. FALSE if glm regression is for counts.
#' @param thresh TRUE if numerically one/zero probability occurrences must be thresholded
#' @param thresh.val if thresh is true, the numerically one/zero probability occurrences is thresholded
#' to this value
#' @param ... other parameters
#' @import matrixStats
#' @import stats
#' @return A list with components:
#' \itemize{
#' \item{pi0.fit - list with feature-wise glm.fit objects}
#' \item{pi0 - matrix with fitted probabilities}
#' }
#'
.getHurdle <- function(mat, hdesign=model.matrix( ~-1+log(colSums(mat)) ),
pres.abs.mod=TRUE,
thresh=FALSE, thresh.val=1e-8, ... ){
n <- ncol(mat)
if(pres.abs.mod){
pi0.fit <- apply(mat, 1, function(x) glm.fit( hdesign, c(1*(x==0)), family=binomial() ) )
pi0 <- t( vapply( pi0.fit, function(x) x$fitted.values, FUN.VALUE = numeric(n) ) )
} else {
tau <- colSums(mat)
pi0.fit <- apply(mat, 1, function(x) glm.fit( hdesign, cbind( tau-x, x ), family=binomial() ) )
pi0 <- t( vapply( pi0.fit, function(x) exp(tau*log(x$fitted.values)), FUN.VALUE = numeric(n) ) )
}
if(thresh){
pi0[pi0>1-thresh.val] <- 1-thresh.val
pi0[pi0<thresh.val] <- thresh.val
}
list("pi0.fit"=pi0.fit, "pi0"=pi0)
}
#' Obtain variances of logged counts.
#'
#'@param mat count matrix; rows are features and columns are samples.
#'@param design model matrix for the count matrix
#'@param plot if the mean-variance trend function (the same as that of voom) needs to be plot.
#'@param ebs2 if regularization of variances needs to be performed.
#'@param smoothed TRUE if all the variance estimates must be based on the mean-variance trend function.
#'@param ... other parameters
#'@import matrixStats
#'@import locfit
#'@import limma
#'@import stats
#'@import graphics
#'@return a vector with variance estimates for logged feature-wise counts.
#'
.gets2 <- function(mat, design=model.matrix(mat[1,]~1), plot=FALSE, ebs2=TRUE, smoothed=FALSE, ...){
p <- nrow(mat)
nzrows <- rowSums(mat)>0
mat <- mat[nzrows,]
tjs <- colSums(mat)
tjs <- tjs/exp(mean(log(tjs)))
design <- cbind( design, log(tjs) )
mat <- log(mat)
mat[!is.finite(mat)] <- NA
fit <- lmFit( mat, design )
s <- fit$sigma
s[s==0] <- NA
mu <- rowMeans( mat, na.rm=TRUE )
sqrt.s <- sqrt(s)
l <- locfit(sqrt.s~mu, family="gamma")
if(plot){
plot( mu, sqrt.s, pch=16, cex=.25 )
lines(l, col='red')
}
k <- predict(l, mu)^4
if(smoothed){
s2 <- k
} else {
s2 <- s^2
s2[is.na(s2)] <- k[is.na(s2)]
if(ebs2){
s2 <- limma::squeezeVar(s2, df = max(c(1, fit$df.residual), na.rm=TRUE) )$var.post
}
}
s2.tmp <- c(matrix(NA, nrow=p, ncol=1))
s2.tmp[nzrows] <- s2
s2.tmp
}
#' Marginal weight computations for wrench estimators.
#' @param res result structure of \code{wrench}
#' @param z.adj TRUE if the result structure was generated with \code{wrench} with \code{z.adj} set to TRUE.
#' @param ... other parameters
#' @return inverse marginal variances for robust mean computing
.getMargWeights <- function( res, z.adj, ... ){
with(res$others, {
s2theta <- design %*% s2thetag
tmp <- exp( sweep( replicate( nrow(design), s2 ), 2, s2theta, "+" ))-1
if(!z.adj){
W<-1/( (1-pi0)*( pi0 + tmp ) )
W[!is.finite(W)] <- NA
} else {
W<-(1-pi0)/(pi0+ tmp)
}
colnames(W) <- colnames(res$others$r)
W
})
}
#' Postive-conditional weight computations for wrench estimators.
#' @param res result structure of \code{wrench}
#' @return positive conditional weights for each sample
.getCondWeights <- function( res ) {
with(res$others, {
radj[radj==0] <- NA
(1-pi0)/(( pi0 + replicate( nrow(design), exp(s2) ) -1 )*(radj^2))
})
}
#' Log Postive-conditional weight computations for wrench estimators.
#' @param res result structure of \code{wrench}
#' @return inverse variance weights when using positive conditional models.
.getCondLogWeights <- function( res ) {
with(res$others, {
radj[radj==0] <- NA
(1-pi0)/(( pi0 + replicate( nrow(design), exp(s2) ) -1 ))
})
}
#' Get weighted means for matrix
#' @param mat input matrix
#' @param w weights
#' @import matrixStats
#' @import limma
#' @return column-wise weighted means.
.getWeightedMean <- function( mat, w=rep(1, nrow(mat)) ){
if( is.vector(w) ){
w <- c(w)
res <- colWeightedMeans( mat, w )
} else {
res <- vapply( seq(ncol(mat)), function(j){
yj <- mat[,j]
wj <- w[,j]
indx <- which( is.finite(yj) & (!is.na(wj)) )
yj <- yj[indx]
wj <- wj[indx]
weighted.mean( yj, wj, na.rm=TRUE )
}, FUN.VALUE = numeric(1) )
}
return(res)
}
#' Get weighted median for matrix
#' @param mat input matrix
#' @param w weights
#' @import matrixStats
#' @import limma
#' @return column-wise weighted means.
.getWeightedMedian <- function( mat, w=rep(1, nrow(mat)) ){
if( is.vector(w) ){
w <- c(w)
res <- colWeightedMedians( mat, w )
} else {
res <- vapply( seq(ncol(mat)), function(j){
yj <- mat[,j]
wj <- w[,j]
indx <- which( is.finite(yj) & (!is.na(wj)) )
yj <- yj[indx]
wj <- wj[indx]
weighted.median( yj, wj, na.rm=TRUE )
}, FUN.VALUE = numeric(1) )
}
return(res)
}
#' Obtain robust means. .
#' @param res result structure of \code{wrench}
#' @param estim.type estimator type
#' @param ... other parameters
#' @import matrixStats
#' @return a chosen summary statistic
.estimSummary <- function( res, estim.type="s2.w.mean", ... ){
if(estim.type=="s2.w.mean"){ #weights based on s2
with(res$others, colWeightedMeans( radj, 1/s2 ))
} else if( estim.type=="gs.mean" ){ #this performs well for real-life data
with(res$others,{
y <- apply( radj, 2, function(x) exp((1/length(x))*sum( log( x[x>0] ) )) )
y/exp(mean(log(y)))
})
} else if(estim.type=="mean"){
with(res$others,{
colMeans(radj)/exp(mean(log(colMeans(radj))))
})
} else if( estim.type=="median" ) {
with(res$others, colMedians(radj)/exp(mean(log(colMedians(radj))))
)
} else if( estim.type=="w.marg.median" ){
W <- .getMargWeights( res, ... )
.getWeightedMedian( res$others$radj, W )
} else if (estim.type=="w.marg.mean"){
W <- .getMargWeights( res, ... )
.getWeightedMean( res$others$radj, W )
}else if( estim.type=="w.cond.median" ){
W <- .getCondWeights( res )
.getWeightedMedian( res$others$radj, W )
} else if( estim.type=="w.cond.mean"){
W <- .getCondWeights( res )
.getWeightedMean( res$others$radj, W )
} else if( estim.type=="w.cond.log.median" ){
W <- .getCondLogWeights( res )
exp( .getWeightedMedian( res$others$radj, W ) )
} else if( estim.type=="w.cond.log.mean"){
W <- .getCondLogWeights( res )
exp( .getWeightedMean( res$others$radj, W ) )
} else if( estim.type=="hurdle.w.mean" ){
W <- 1/(1-res$others$pi0)
.getWeightedMean( res$others$radj, W )
}
}
#' This function generates the reference.
#' @import matrixStats
#' @param mat count matrix; rows are features and columns are samples
#' @param ref.est reference estimate method
#' @param ... other parameters
#' @return the reference to be used for normalization
#' @import stats
#' @import graphics
.getReference <- function( mat, ref.est="sw.means", ... ){
tots <- colSums(mat)
if(ref.est=="logistic"){
qref <- 1-plogis(
apply( mat, 1, function(x){
glm( cbind(tots-x, x)~1, family=binomial() )$coefficients
} )
)
} else if(ref.est == "sw.means"){ #sample-wise means
qmat <- sweep(mat, 2, colSums(mat), "/")
qref <- rowMeans(qmat)
} else {
stop("Unknown reference type.")
}
qref
}
#'@import stats
#'@import graphics
.detrend.ccf <- function(ccf, tau, grp, plt.detrends.all=FALSE){
logccf <- log(ccf)
logtau <- log(tau)
grp <- as.factor(grp)
df <- data.frame("logccf"=logccf, "grp"=grp, "logtau"=logtau)
for( g in levels(df$grp) ){ #fit lm and remove trend
g.indcs <- which(df$grp==g)
g.sub <- df[g.indcs, ]
g.fit <- lm( logccf ~ logtau, data=g.sub )
pred.values <- predict( g.fit )
if(plt.detrends.all){
plot( g.sub$logccf ~ g.sub$logtau, col = "black" )
points( pred.values ~ g.sub$logtau, col = "red", pch=19 )
}
max.tau.indx <- which.max( g.sub$logtau )
g.sub$logccf <- g.sub$logccf + ( pred.values[max.tau.indx] - pred.values )
df$logccf[g.indcs] <- g.sub$logccf
}
ccfs.detr <- exp(df$logccf)
res <- list()
res$ccf.detr.un <- ccfs.detr
res$ccf.detr <- ccfs.detr / exp( mean(log(ccfs.detr)) )
res
}
#' @title Normalization for sparse, under-sampled count data.
#'
#' @description Obtain normalization factors for sparse, under-sampled count data that often arise with
#' metagenomic count data.
#'
#' @param mat count matrix; rows are features and columns are samples
#' @param condition a vector with group information on the samples
#' @param etype weighting strategy with the following options:
#' \itemize{
#' \item{ hurdle.w.mean, the W1 estimator in manuscript.}
#' \item{ w.marg.mean, the W2 estimator in manuscript. These are appropriately computed depending on
#' whether \code{z.adj}=TRUE (see below)
#' }
#' \item{s2.w.mean, weight by inverse of feature-variances of logged count data. }
#' }
#' @param ebcf TRUE if empirical bayes regularization of ratios needs to be performed. Default recommended.
#' @param z.adj TRUE if the feature-wise ratios need to be adjusted
#' by hurdle probabilities (arises when taking marginal expectation). Default recommended.
#' @param phi.adj TRUE if estimates need to be adjusted for variance terms
#' (arises when considering positive-part expectations). Default recommended.
#' @param detrend FALSE if any linear dependence between sample-depth and compositional factors needs to be removed.
#' (setting this to TRUE reduces variation in compositional factors and can improve accuracy, but requires an extra assumption that no linear dependence between compositional factors and sample depth is present in samples).
#' @param ... other parameters
#' @import matrixStats
#' @import stats
#' @return a \code{list} with components:
#' \itemize{
#' \item{ \code{nf}, \emph{normalization factors} for samples passed.
#' Samples with zero total counts are removed from output. }
#' \item{ \code{ccf}, \emph{compositional correction factors}.
#' Samples with zero total counts are removed from output.
#' }
#' \item{ \code{others}, a \code{list} with results from intermediate computations. }
#' \itemize{
#' \item{ \code{qref}, reference chosen. }
#' \item{ \code{design}, design matrix used for computation of positive-part parameters. }
#' \item{ \code{s2}, feature-wise variances of logged count data. }
#' \item{ \code{r}, (regularized) ratios of feature-wise proportions. }
#' \item{ \code{radj}, adjustments made to the regularized ratios based
#' on z.adj and phi.adj settings.}
#' }
#' }
#' @examples
#' #Obtain counts matrix and some group information
#' require(metagenomeSeq)
#' data(mouseData)
#' cntsMatrix <- MRcounts(mouseData)
#' group <- pData(mouseData)$diet
#' #Running wrench with defaults
#' W <- wrench( cntsMatrix, condition=group )
#' compositionalFactors <- W$ccf
#' normalizationFactors <- W$nf
#'
#'#Introducing the above normalization factors for the most
#'# commonly used tools is shown below.
#'
#' #If using metagenomeSeq
#' normalizedObject <- mouseData
#' normFactors(normalizedObject) <- normalizationFactors
#'
#' #If using edgeR, we must pass in the compositional factors
#'require(edgeR)
#'edgerobj <- DGEList( counts=cntsMatrix,
#' group = as.matrix(group),
#' norm.factors=compositionalFactors )
#'
#' #If using DESeq/DESeq2
#'require(DESeq2)
#'deseq.obj <- DESeqDataSetFromMatrix(countData = cntsMatrix,
#' DataFrame(group),
#' ~ group )
#'DESeq2::sizeFactors(deseq.obj) <- normalizationFactors
#' @author M. Senthil Kumar
#' @export
wrench <- function( mat, condition, etype="w.marg.mean",
ebcf=TRUE, z.adj=FALSE, phi.adj=TRUE, detrend=FALSE, ... ){
#trim
mat <- mat[rowSums(mat)>0,]
nzcols <- colSums(mat)>0
mat <- mat[,nzcols]
condition <- condition[nzcols]
#feature-wise parameters: hurdle, variance, reference and raw ratios
n <- ncol(mat)
p <- nrow(mat)
tots <- colSums(mat)
compute.pi0 <- !((etype %in% c("mean", "median", "s2.w.mean")) & !z.adj )
if(compute.pi0){
pi0 <- .getHurdle( mat, ... )$pi0
}
group <- as.character(condition)
if(length(unique(group)) == 1){
design <- model.matrix(mat[1,]~1)
} else {
design <- model.matrix(~-1+group)
}
s2 <- .gets2(mat,design,...)
#refernece
qref <- .getReference( mat, ... )
#sample-wise ratios
qmat <- sweep(mat, 2, colSums(mat), "/")
r <- qmat/qref
if(ebcf){
#group-wise ratios
Yg <- vapply( unique(group), function(g){
g_indx <- which(group==g)
ng <- sum(group==g)
if(ng>1){
rowSums(mat[,g_indx])
} else {
mat[,g_indx]
}
}, FUN.VALUE=numeric(p) )
qg <- sweep(Yg, 2, colSums(Yg), "/") #weighted estimator
rg <- qg/qref
lrg <- log(rg)
lrg[!is.finite(lrg)] <- NA
s2thetag <- colVars(lrg, na.rm=TRUE)
s2thetag_rep <- design %*% s2thetag
thetag <- colMeans(rg)
thetag_rep <- c(design %*% thetag)
#regularized estimation of positive means.
r <- sweep(r, 2, thetag_rep, "/")
thetagj <- exp( vapply(seq(n), function(j){
x <- log(r[,j])
x[!is.finite(x)] <- NA
weighted.mean( x, w=1/(s2+s2thetag_rep[j]), na.rm=TRUE )
}, FUN.VALUE = numeric(1)))
thetagi <- t( vapply(seq(p), function(i){
exp(
(s2thetag_rep/(s2[i]+s2thetag_rep))*( log(r[i,]) - log(thetagj) )
)
}, FUN.VALUE = numeric(n)) )
r <- sweep( thetagi, 2, thetagj*thetag_rep, "*")
}
#adjustments for marginal, and truncated means.
phi2 <- exp(s2)
radj <- r
if(z.adj){
radj <- radj/(1-pi0)
}
if(phi.adj){
radj <- sweep( radj, 1, sqrt(phi2), "/" )
}
#return result structure
res <- list()
res$others <- list()
if(ebcf){
res$others <- list( "rg" = rg,
"thetag" = thetag,
"thetagi" = thetagi,
"s2thetag" = s2thetag
)
}
res$others <- c(
res$others,
list(
"qref"=qref,
"design" = design,
"s2" = s2,
"r" = r,
"radj" = radj)
)
if(compute.pi0){
res$others <- c(res$others, list("pi0"=pi0))
}
res$ccf <- .estimSummary( res, estim.type = etype, z.adj=z.adj, ... )
res$ccf <- with(res, ccf/exp(mean(log(ccf))))
if( detrend ){
res$others$ccf0 <- res$ccf
detrended <- .detrend.ccf( res$ccf, tots, condition )
res$others$ccf.detr.un <- detrended$ccf.detr.un
res$ccf <- detrended$ccf.detr
}
tjs <- colSums(mat)/exp(mean(log(colSums(mat))))
names(res$ccf) <- names(tjs)
res$nf <- res$ccf * tjs
res
}
|