1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
|
% Generated by roxygen2: do not edit by hand
% Please edit documentation in R/sample.ratio.R
\name{sample.ratio}
\alias{sample.ratio}
\title{Demonstrate the ratio estimation in sampling survey}
\usage{
sample.ratio(
X = runif(50, 0, 5),
R = 1,
Y = R * X + rnorm(X),
size = length(X)/2,
p.col = c("blue", "red"),
p.cex = c(1, 3),
p.pch = c(20, 21),
m.col = c("black", "gray"),
legend.loc = "topleft",
...
)
}
\arguments{
\item{X}{the X variable (ancillary)}
\item{R}{the population ratio Y/X}
\item{Y}{the Y variable (whose mean we what to estimate)}
\item{size}{sample size}
\item{p.col, p.cex, p.pch}{point colors, magnification and symbols for the
population and sample respectively}
\item{m.col}{color for the horizontal line to denote the sample mean of Y}
\item{legend.loc}{legend location: topleft, topright, bottomleft,
bottomright, ... (see \code{\link{legend}})}
\item{\dots}{other arguments passed to \code{\link{plot.default}}}
}
\value{
A list containing \item{X}{X population} \item{Y}{Y population}
\item{R}{population ratio} \item{r}{ratio calculated from samples}
\item{Ybar}{population mean of Y} \item{ybar.simple}{simple sample mean of
Y} \item{ybar.ratio}{sample mean of Y via ratio estimation}
}
\description{
This function demonstrates the advantage of ratio estimation when further
information (ratio) about x and y is available.
}
\details{
From this demonstration we can clearly see that the ratio estimation is
generally better than the simple sample average when the ratio \bold{R}
really exists, otherwise ratio estimation may not help.
}
\references{
Examples at \url{https://yihui.org/animation/example/sample-ratio/}
}
\seealso{
\code{\link{sample}}, \code{\link{sample.simple}},
\code{\link{sample.cluster}}, \code{\link{sample.strat}},
\code{\link{sample.system}}
}
\author{
Yihui Xie
}
|