File: conversions.R

package info (click to toggle)
r-cran-apcluster 1.4.13-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,744 kB
  • sloc: cpp: 1,258; ansic: 346; makefile: 2
file content (157 lines) | stat: -rw-r--r-- 4,005 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
as.SparseSimilarityMatrix.matrix <- function(s, lower=-Inf)
{
    if (!is(s, "matrix"))
    {
        s <- try(as(s, "matrix"))

        if (is(s, "try-error"))
            stop("cannot cast 's' (class '", class(s), "') to class 'matrix'")
    }

    if (nrow(s) != ncol(s) && ncol(s) != 3)
        stop("matrix 's' must be quadratic or have 3 columns")

    if (nrow(s) == ncol(s))
    {
        sel <- which(s > lower, arr.ind=TRUE)

        remElem <- which(sel[, 1] == sel[, 2])

        if (length(remElem) > 0)
            sel <- sel[-remElem, , drop=FALSE]

        if (nrow(sel) == 0)
            S <- new("dgTMatrix", Dim=dim(s))
        else
            S <- new("dgTMatrix", Dim=dim(s),
                     i=as.integer(sel[, 1] - 1),
                     j=as.integer(sel[, 2] - 1),
                     x=s[sel])
    }
    else
    {
        if (min(s[, 1:2]) <= 0)
            stop("indices in 's' must be >= 1")

        if (any(s[, 1:2] != floor(s[, 1:2])))
            stop("indices in 's' must be natural numbers")

        remElem <- which(s[, 1] == s[, 2] | s[, 3] <= lower)

        if (length(remElem) > 0)
            s <- s[-remElem, , drop=FALSE]

        if (nrow(s) == 0)
            S <- new("dgTMatrix", Dim=as.integer(c(0, 0)))
        else
        {
            N <- max(s[, 1:2])

            S <- new("dgTMatrix", Dim=as.integer(c(N, N)),
                     i=as.integer(s[, 1] - 1),
                     j=as.integer(s[, 2] - 1),
                     x=s[, 3])
        }
    }

    S
}

setMethod("as.SparseSimilarityMatrix", signature(s="matrix"),
          as.SparseSimilarityMatrix.matrix)

setMethod("as.SparseSimilarityMatrix", signature(s="Matrix"),
          as.SparseSimilarityMatrix.matrix)


as.SparseSimilarityMatrix.sparseMatrix <- function(s, lower=-Inf)
{
    if (nrow(s) != ncol(s))
        stop("argument 's' must be quadratic similarity matrix")

    if (!is(s, "dgTMatrix"))
    {
        s <- try(as(as(s, "TsparseMatrix"), "dgTMatrix"))

        if (is(s, "try-error"))
            stop("cannot cast 's' (class '", class(s),
                 "') to class 'dgTMatrix'")
    }

    remElem <- which(s@i == s@j | s@x <= lower)

    if (length(remElem) > 0)
    {
        s@i <- s@i[-remElem]
        s@j <- s@j[-remElem]
        s@x <- s@x[-remElem]
    }

    s
}

setMethod("as.SparseSimilarityMatrix", signature(s="sparseMatrix"),
          as.SparseSimilarityMatrix.sparseMatrix)



as.DenseSimilarityMatrix.matrix <- function(s, fill=-Inf)
{
    if (!is(s, "matrix"))
    {
        s <- try(as(s, "matrix"))

        if (is(s, "try-error"))
            stop("cannot cast 's' (class '", class(s), "') to class 'matrix'")
    }

    if (ncol(s) != 3)
        stop("'s' must be a matrix with 3 columns")

    if (min(s[, 1:2]) <= 0)
        stop("indices in 's' must be >= 1")

    if (any(s[, 1:2] != floor(s[, 1:2])))
        stop("indices in 's' must be natural numbers")

    N <- max(s[, 1:2])

    S <- matrix(fill, N, N)

    S[s[, 1] + N * (s[, 2] - 1)] <- s[, 3]

    S
}

setMethod("as.DenseSimilarityMatrix", signature(s="matrix"),
          as.DenseSimilarityMatrix.matrix)

setMethod("as.DenseSimilarityMatrix", signature(s="Matrix"),
          as.DenseSimilarityMatrix.matrix)


as.DenseSimilarityMatrix.sparseMatrix <- function(s, fill=-Inf)
{
    if (nrow(s) != ncol(s))
        stop("argument 's' must be quadratic similarity matrix")

    if (!is(s, "dgTMatrix"))
    {
        s <- try(as(as(s, "TsparseMatrix"), "dgTMatrix"))

        if (is(s, "try-error"))
            stop("cannot cast 's' (class '", class(s),
                 "') to class 'dgTMatrix'")
    }

    N <- nrow(s)

    S <- matrix(fill, N, N)

    S[(s@i + 1) + N * s@j] <- s@x

    S
}

setMethod("as.DenseSimilarityMatrix", signature(s="sparseMatrix"),
          as.DenseSimilarityMatrix.sparseMatrix)