1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
|
\name{APResult-class}
\docType{class}
\alias{APResult-class}
\alias{APResult}
\alias{apresult}
\alias{similarity}
\alias{[,APResult,index,missing,missing-method}
\alias{[[,APResult,index,missing-method}
\alias{length,APResult-method}
\alias{similarity,APResult-method}
\title{Class "APResult"}
\description{S4 class for storing results of affinity propagation
clustering. It extends the class \code{\linkS4class{ExClust}}.}
\section{Objects}{
Objects of this class can be created by calling \code{\link{apcluster}}
or \code{\link{apclusterL}} for a given similarity matrix or calling
one of these procedures with a data set and a similarity measure.
}
\section{Slots}{
The following slots are defined for \link{APResult} objects. Most names
are taken from Frey's and Dueck's original Matlab package:
\describe{
\item{\code{sweeps}:}{number of times leveraged clustering ran with
different subsets of samples}
\item{\code{it}:}{number of iterations the algorithm ran}
\item{\code{p}:}{input preference (either set by user or
computed by \code{\link{apcluster}} or
\code{\link{apclusterL}})}
\item{\code{netsim}:}{final total net similarity, defined as the
sum of \code{expref} and \code{dpsim}
(see below)}
\item{\code{dpsim}:}{final sum of similarities of data points to
exemplars}
\item{\code{expref}:}{final sum of preferences of the identified
exemplars}
\item{\code{netsimLev}:}{total net similarity of the individual
sweeps for leveraged clustering; only
available for leveraged clustering}
\item{\code{netsimAll}:}{vector containing the total net similarity
for each iteration; only available if
\code{\link{apcluster}} was called with
\code{details=TRUE}}
\item{\code{exprefAll}:}{vector containing the sum of preferences
of the identified exemplars
for each iteration; only available if
\code{\link{apcluster}} was called with
\code{details=TRUE}}
\item{\code{dpsimAll}:}{vector containing the sum of similarities
of data points to exemplars
for each iteration; only available if
\code{\link{apcluster}} was called with
\code{details=TRUE}}
\item{\code{idxAll}:}{matrix with sample-to-exemplar indices
for each iteration; only available if
\code{\link{apcluster}} was called with
\code{details=TRUE}}
}
}
\section{Extends}{
Class \code{"ExClust"}, directly.
}
\section{Methods}{
\describe{
\item{plot}{\code{signature(x="APResult")}: see
\code{\link{plot-methods}}}
\item{plot}{\code{signature(x="ExClust", y="matrix")}: see
\code{\link{plot-methods}}}
\item{heatmap}{\code{signature(x="ExClust")}: see
\code{\link{heatmap-methods}}}
\item{heatmap}{\code{signature(x="ExClust", y="matrix")}: see
\code{\link{heatmap-methods}}}
\item{show}{\code{signature(object="APResult")}: see
\code{\link{show-methods}}}
\item{labels}{\code{signature(object="APResult")}: see
\code{\link{labels-methods}}}
\item{cutree}{\code{signature(object="APResult")}: see
\code{\link{cutree-methods}}}
\item{length}{\code{signature(x="APResult")}: gives the number of
clusters.}
\item{sort}{\code{signature(x="ExClust")}: see
\code{\link{sort-methods}}}
\item{as.hclust}{\code{signature(x="ExClust")}: see
\code{\link{coerce-methods}}}
\item{as.dendrogram}{\code{signature(object="ExClust")}: see
\code{\link{coerce-methods}}}
}
}
\section{Accessors}{
In the following code snippets, \code{x} is an \code{APResult} object.
\describe{
\item{[[}{\code{signature(x="APResult", i="index", j="missing")}:
\code{x[[i]]} returns the i-th cluster as a list of indices
of samples belonging to the i-th cluster.
}
\item{[}{\code{signature(x="APResult", i="index", j="missing",
drop="missing")}: \code{x[i]} returns a list of integer vectors with the
indices of samples belonging to this cluster. The list has as
many components as the argument \code{i} has elements. A list is
returned even if \code{i} is a single integer.
}
\item{similarity}{\code{signature(x="APResult")}: gives the similarity
matrix.
}
}
}
\author{Ulrich Bodenhofer, Andreas Kothmeier, Johannes Palme}
\references{\url{https://github.com/UBod/apcluster}
APCluster: an R package for affinity propagation clustering.
\emph{Bioinformatics} \bold{27}, 2463-2464.
DOI: \doi{10.1093/bioinformatics/btr406}.
Frey, B. J. and Dueck, D. (2007) Clustering by passing messages
between data points. \emph{Science} \bold{315}, 972-976.
DOI: \doi{10.1126/science.1136800}.
}
\seealso{\code{\link{apcluster}}, \code{\link{apclusterL}},
\code{\link{show-methods}}, \code{\link{plot-methods}},
\code{\link{labels-methods}}, \code{\link{cutree-methods}}}
\examples{
## create two Gaussian clouds
cl1 <- cbind(rnorm(100, 0.2, 0.05), rnorm(100, 0.8, 0.06))
cl2 <- cbind(rnorm(50, 0.7, 0.08), rnorm(50, 0.3, 0.05))
x <- rbind(cl1, cl2)
## compute similarity matrix (negative squared Euclidean)
sim <- negDistMat(x, r=2)
## run affinity propagation
apres <- apcluster(sim, details=TRUE)
## show details of clustering results
show(apres)
## plot information about clustering run
plot(apres)
## plot clustering result
plot(apres, x)
## plot heatmap
heatmap(apres, sim)
}
\keyword{classes}
|