File: APResult-class.Rd

package info (click to toggle)
r-cran-apcluster 1.4.13-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 1,744 kB
  • sloc: cpp: 1,258; ansic: 346; makefile: 2
file content (146 lines) | stat: -rw-r--r-- 5,889 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
\name{APResult-class}
\docType{class}
\alias{APResult-class}
\alias{APResult}
\alias{apresult}
\alias{similarity}
\alias{[,APResult,index,missing,missing-method}
\alias{[[,APResult,index,missing-method}
\alias{length,APResult-method}
\alias{similarity,APResult-method}

\title{Class "APResult"}
\description{S4 class for storing results of affinity propagation
clustering. It extends the class \code{\linkS4class{ExClust}}.}
\section{Objects}{
Objects of this class can be created by calling \code{\link{apcluster}}
or \code{\link{apclusterL}} for a given similarity matrix or calling
one of these procedures with a data set and a similarity measure.
}
\section{Slots}{
The following slots are defined for \link{APResult} objects. Most names
are taken from Frey's and Dueck's original Matlab package:
    \describe{
    \item{\code{sweeps}:}{number of times leveraged clustering ran with 
    	                  different subsets of samples}
    \item{\code{it}:}{number of iterations the algorithm ran}
    \item{\code{p}:}{input preference (either set by user or
                     computed by \code{\link{apcluster}} or
                     \code{\link{apclusterL}})}
    \item{\code{netsim}:}{final total net similarity, defined as the
                          sum of \code{expref} and \code{dpsim}
                          (see below)}
    \item{\code{dpsim}:}{final sum of similarities of data points to
                         exemplars}
    \item{\code{expref}:}{final sum of preferences of the identified
                          exemplars}
    \item{\code{netsimLev}:}{total net similarity of the individual 
    	                     sweeps for leveraged clustering; only
    	                     available for leveraged clustering}
    \item{\code{netsimAll}:}{vector containing the total net similarity
                             for each iteration; only available if
                             \code{\link{apcluster}} was called with
                             \code{details=TRUE}}
    \item{\code{exprefAll}:}{vector containing the sum of preferences
                             of the identified exemplars
                             for each iteration; only available if
                             \code{\link{apcluster}} was called with
                             \code{details=TRUE}}
    \item{\code{dpsimAll}:}{vector containing the sum of similarities
                            of data points to exemplars
                            for each iteration; only available if
                            \code{\link{apcluster}} was called with
                            \code{details=TRUE}}
    \item{\code{idxAll}:}{matrix with sample-to-exemplar indices
                          for each iteration; only available if
                          \code{\link{apcluster}} was called with
                          \code{details=TRUE}}
  }
}
\section{Extends}{
Class \code{"ExClust"}, directly.
}
\section{Methods}{
  \describe{
    \item{plot}{\code{signature(x="APResult")}: see
       \code{\link{plot-methods}}}
    \item{plot}{\code{signature(x="ExClust", y="matrix")}: see
       \code{\link{plot-methods}}}
    \item{heatmap}{\code{signature(x="ExClust")}: see
       \code{\link{heatmap-methods}}}
    \item{heatmap}{\code{signature(x="ExClust", y="matrix")}: see
       \code{\link{heatmap-methods}}}
    \item{show}{\code{signature(object="APResult")}: see
       \code{\link{show-methods}}}
    \item{labels}{\code{signature(object="APResult")}: see
       \code{\link{labels-methods}}}
    \item{cutree}{\code{signature(object="APResult")}: see
       \code{\link{cutree-methods}}}
    \item{length}{\code{signature(x="APResult")}: gives the number of
      clusters.}
    \item{sort}{\code{signature(x="ExClust")}: see
       \code{\link{sort-methods}}}
    \item{as.hclust}{\code{signature(x="ExClust")}: see
       \code{\link{coerce-methods}}}
    \item{as.dendrogram}{\code{signature(object="ExClust")}: see
       \code{\link{coerce-methods}}}
    }
}
\section{Accessors}{
  In the following code snippets, \code{x} is an \code{APResult} object.
  \describe{
    \item{[[}{\code{signature(x="APResult", i="index", j="missing")}:
      \code{x[[i]]} returns the i-th cluster as a list of indices
      of samples belonging to the i-th cluster.
    }
    \item{[}{\code{signature(x="APResult", i="index", j="missing",
      drop="missing")}: \code{x[i]} returns a list of integer vectors with the
      indices  of samples belonging to this cluster. The list has as
      many components as the argument \code{i} has elements. A list is
      returned even if \code{i} is a single integer.
    }
    \item{similarity}{\code{signature(x="APResult")}: gives the similarity
      matrix.
    }
  }
}

\author{Ulrich Bodenhofer, Andreas Kothmeier, Johannes Palme}
\references{\url{https://github.com/UBod/apcluster}

APCluster: an R package for affinity propagation clustering.
\emph{Bioinformatics} \bold{27}, 2463-2464.
DOI: \doi{10.1093/bioinformatics/btr406}.

Frey, B. J. and Dueck, D. (2007) Clustering by passing messages
between data points. \emph{Science} \bold{315}, 972-976.
DOI: \doi{10.1126/science.1136800}.
}
\seealso{\code{\link{apcluster}}, \code{\link{apclusterL}}, 
  \code{\link{show-methods}}, \code{\link{plot-methods}}, 
  \code{\link{labels-methods}}, \code{\link{cutree-methods}}}
\examples{
## create two Gaussian clouds
cl1 <- cbind(rnorm(100, 0.2, 0.05), rnorm(100, 0.8, 0.06))
cl2 <- cbind(rnorm(50, 0.7, 0.08), rnorm(50, 0.3, 0.05))
x <- rbind(cl1, cl2)

## compute similarity matrix (negative squared Euclidean)
sim <- negDistMat(x, r=2)

## run affinity propagation
apres <- apcluster(sim, details=TRUE)

## show details of clustering results
show(apres)

## plot information about clustering run
plot(apres)

## plot clustering result
plot(apres, x)

## plot heatmap
heatmap(apres, sim)
}
\keyword{classes}