1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
|
\name{labels-methods}
\docType{methods}
\alias{labels}
\alias{labels-methods}
\alias{labels,APResult-method}
\alias{labels,ExClust-method}
\title{Generate label vector from clustering result}
\description{
Generate a label vector from an clustering result
}
\usage{
\S4method{labels}{ExClust}(object, type="names")
}
\arguments{
\item{object}{object of class \code{\linkS4class{APResult}}
or \code{\linkS4class{ExClust}}}
\item{type}{specifies which kind of label vector should be
created, see details below}
}
\details{
The function \code{labels} creates a label vector from a clustering
result. Which kind of labels are produced is controlled by the
argument \code{type}:
\describe{
\item{\dQuote{names}}{(default) returns the name of the exemplar
to which each
data sample belongs to; if no names are available, the function
stops with an error;}
\item{\dQuote{enum}}{returns the index of the cluster to which
each data sample belongs to, where clusters are enumerated
consecutively from 1 to the number of clusters (analogous to
other clustering methods like \code{\link{kmeans}});}
\item{\dQuote{exemplars}}{returns the index of the exemplar to
which each data sample belongs to, where indices of exemplars are
within the original data, which is nothing else but the slot
\code{object@idx} with attributes removed.}}
}
\value{
returns a label vector as long as the number of samples in the
original data set
}
\author{Ulrich Bodenhofer and Andreas Kothmeier}
\references{\url{https://github.com/UBod/apcluster}
Bodenhofer, U., Kothmeier, A., and Hochreiter, S. (2011)
APCluster: an R package for affinity propagation clustering.
\emph{Bioinformatics} \bold{27}, 2463-2464.
DOI: \doi{10.1093/bioinformatics/btr406}.
}
\seealso{\code{\linkS4class{APResult}},
\code{\linkS4class{ExClust}}, \code{\link{cutree}}}
\examples{
## create two simple clusters
x <- c(1, 2, 3, 7, 8, 9)
names(x) <- c("a", "b", "c", "d", "e", "f")
## compute similarity matrix (negative squared distance)
sim <- negDistMat(x, r=2)
## run affinity propagation
apres <- apcluster(sim)
## show details of clustering results
show(apres)
## label vector (names of exemplars)
labels(apres)
## label vector (consecutive index of exemplars)
labels(apres, type="enum")
## label vector (index of exemplars within original data set)
labels(apres, type="exemplars")
## now with agglomerative clustering
aggres <- aggExCluster(sim)
## label (names of exemplars)
labels(cutree(aggres, 2))
}
\keyword{cluster}
\keyword{methods}
|