1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
|
\name{chronos}
\alias{chronos}
\alias{makeChronosCalib}
\alias{chronos.control}
\alias{print.chronos}
\title{Molecular Dating by Penalised Likelihood and Maximum Likelihood}
\description{
\code{chronos} is the main function fitting a chronogram to a
phylogenetic tree whose branch lengths are in number of substitution
per sites.
\code{makeChronosCalib} is a tool to prepare data frames with the
calibration points of the phylogenetic tree.
\code{chronos.control} creates a list of parameters to be passed
to \code{chronos}.
}
\usage{
chronos(phy, lambda = 1, model = "correlated", quiet = FALSE,
calibration = makeChronosCalib(phy),
control = chronos.control())
\method{print}{chronos}(x, ...)
makeChronosCalib(phy, node = "root", age.min = 1,
age.max = age.min, interactive = FALSE, soft.bounds = FALSE)
chronos.control(...)
}
\arguments{
\item{phy}{an object of class \code{"phylo"}.}
\item{lambda}{value of the smoothing parameter.}
\item{model}{a character string specifying the model of substitution
rate variation among branches. The possible choices are:
``correlated'', ``relaxed'', ``discrete'', ``clock'', or an
unambiguous abbreviation of these.}
\item{quiet}{a logical value; by default the calculation progress are
displayed.}
\item{calibration}{a data frame (see details).}
\item{control}{a list of parameters controlling the optimisation
procedure (see details).}
\item{x}{an object of class \code{c("chronos", "phylo")}.}
\item{node}{a vector of integers giving the node numbers for which a
calibration point is given. The default is a short-cut for the
root.}
\item{age.min, age.max}{vectors of numerical values giving the minimum
and maximum ages of the nodes specified in \code{node}.}
\item{interactive}{a logical value. If \code{TRUE}, then \code{phy} is
plotted and the user is asked to click close to a node and enter the
ages on the keyboard.}
\item{soft.bounds}{(currently unused)}
\item{\dots}{in the case of \code{chronos.control}: one of the five
parameters controlling optimisation (unused in the case of
\code{print.chronos}).}
}
\details{
\code{chronos} replaces \code{chronopl} but with a different interface
and some extensions (see References).
The known dates (argument \code{calibration}) must be given in a data
frame with the following column names: node, age.min, age.max, and
soft.bounds (the last one is yet unused). For each row, these are,
respectively: the number of the node in the ``phylo'' coding standard,
the minimum age for this node, the maximum age, and a logical value
specifying whether the bounds are soft. If age.min = age.max, this
means that the age is exactly known. This data frame can be built with
\code{makeChronosCalib} which returns by default a data frame with a
single row giving age = 1 for the root. The data frame can be built
interactively by clicking on the plotted tree.
The argument \code{control} allows one to change some parameters of
the optimisation procedure. This must be a list with names. The
available options with their default values are:
\itemize{
\item{tol = 1e-8: }{tolerance for the estimation of the substitution
rates.}
\item{iter.max = 1e4: }{the maximum number of iterations at each
optimization step.}
\item{eval.max = 1e4: }{the maximum number of function evaluations at
each optimization step.}
\item{nb.rate.cat = 10: }{the number of rate categories if \code{model
= "discrete"} (set this parameter to 1 to fit a strict clock
model).}
\item{dual.iter.max = 20: }{the maximum number of alternative
iterations between rates and dates.}
\item{epsilon = 1e-6: }{the convergence diagnostic criterion.}
}
Using \code{model = "clock"} is actually a short-cut to \code{model =
"discrete"} and setting \code{nb.rate.cat = 1} in the list passed to
\code{control}.
The command \code{chronos.control()} returns a list with the default
values of these parameters. They may be modified by passing them to
this function, or directly in the list.
}
\value{
\code{chronos} returns an object of class \code{c("chronos",
"phylo")}. There is a print method for it. There are additional
attributes which can be visualised with \code{str} or extracted with
\code{attr}.
\code{makeChronosCalib} returns a data frame.
\code{chronos.control} returns a list.
}
\references{
Kim, J. and Sanderson, M. J. (2008) Penalized likelihood phylogenetic
inference: bridging the parsimony-likelihood gap. \emph{Systematic
Biology}, \bold{57}, 665--674.
Paradis, E. (2013) Molecular dating of phylogenies by likelihood
methods: a comparison of models and a new information
criterion. \emph{Molecular Phylogenetics and Evolution}, \bold{67},
436--444.
Sanderson, M. J. (2002) Estimating absolute rates of molecular
evolution and divergence times: a penalized likelihood
approach. \emph{Molecular Biology and Evolution}, \bold{19},
101--109.
}
\author{Emmanuel Paradis, Santiago Claramunt, Guillaume Louvel}
\seealso{\code{\link{chronoMPL}}}
\examples{
library(ape)
tr <- rtree(10)
### the default is the correlated rate model:
chr <- chronos(tr)
### strict clock model:
ctrl <- chronos.control(nb.rate.cat = 1)
chr.clock <- chronos(tr, model = "discrete", control = ctrl)
### How different are the rates?
attr(chr, "rates")
attr(chr.clock, "rates")
\dontrun{
cal <- makeChronosCalib(tr, interactive = TRUE)
cal
### if you made mistakes, you can edit the data frame with:
### fix(cal)
chr <- chronos(tr, calibration = cal)
}
}
\keyword{models}
|