File: as.bitsplits.R

package info (click to toggle)
r-cran-ape 5.8-1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,676 kB
  • sloc: ansic: 7,676; cpp: 116; sh: 17; makefile: 2
file content (131 lines) | stat: -rw-r--r-- 3,460 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
## as.bitsplits.R (2024-01-13)

##   Conversion Among Split Classes

## Copyright 2011-2024 Emmanuel Paradis, 2019 Klaus Schliep

## This file is part of the R-package `ape'.
## See the file ../COPYING for licensing issues.

as.bitsplits <- function(x) UseMethod("as.bitsplits")

as.bitsplits.prop.part <- function(x)
{
    foo <- function(vect, RAWVECT) {
        res <- RAWVECT
        for (y in vect) {
            i <- ceiling(y/8)
            res[i] <- res[i] | as.raw(2^(8 - ((y - 1) %% 8) - 1))
        }
        res
    }

    N <- length(x) # number of splits
    n <- length(x[[1]]) # number of tips

    nr <- ceiling(n/8)
    mat <- raw(N * nr)
    dim(mat) <- c(nr, N)

    RAWVECT <- raw(nr)

    for (i in 1:N) mat[, i] <- foo(x[[i]], RAWVECT)

    ## add the n trivial splits of size 1... :
    mat.bis <- raw(n * nr)
    dim(mat.bis) <- c(nr, n)
    for (i in 1:n) mat.bis[, i] <- foo(i, RAWVECT)

    ## ... drop the trivial split of size n... :
    mat <- cbind(mat.bis, mat[, -1, drop = FALSE])

    ## ... update the split frequencies... :
    freq <- attr(x, "number")
    freq <- c(rep(freq[1L], n), freq[-1L])

    ## ... and numbers:
    N <- N + n - 1L

    structure(list(matsplit = mat, labels = attr(x, "labels"),
                   freq =  freq), class = "bitsplits")
}

print.bitsplits <- function(x, ...)
{
    n <- length(x$freq)
    cat("Object of class \"bitsplits\"\n")
    cat("   ", length(x$labels), "tips\n")
    cat("   ", n, "partition")
    if (n > 1) cat("s")
    cat("\n")
}

sort.bitsplits <- function(x, decreasing = FALSE, ...)
{
    o <- order(x$freq, decreasing = decreasing)
    x$matsplit <- x$matsplit[, o]
    x$freq <- x$freq[o]
    x
}

as.prop.part <- function(x, ...) UseMethod("as.prop.part")

as.prop.part.bitsplits <- function(x, include.trivial = FALSE, ...)
{
    decodeBitsplits <- function(x) {
        f <- function(y) rev(rawToBits(y)) == as.raw(1)
        which(unlist(lapply(x, f)))
    }
    N <- ncol(x$matsplit) # nb of splits
    n <- length(x$labels) # nb of tips
    Nres <- if (include.trivial) N + 1L else N
    res <- vector("list", Nres)
    if (include.trivial) res[[1]] <- 1:n
    j <- if (include.trivial) 2L else 1L
    for (i in 1:N) {
        res[[j]] <- decodeBitsplits(x$matsplit[, i])
        j <- j + 1L
    }
    attr(res, "number") <- if (include.trivial) c(N, x$freq) else x$freq
    attr(res, "labels") <- x$labels
    class(res) <- "prop.part"
    res
}

bitsplits <- function(x)
{
    if (inherits(x, "phylo")) {
        x <- list(x)
        class(x) <- "multiPhylo"
    } else {
        if (!inherits(x, "multiPhylo"))
            stop('x is not of class "phylo" or "multiPhylo"')
    }
    if (any(is.rooted(x)))
        stop("bitsplits() accepts only unrooted trees")
    x <- .compressTipLabel(x)
    labs <- attr(x, "TipLabel")
    n <- length(labs)
    if (n > 46341)
        warning("Tree(s) with more than 46,341 tips: this is likely too large.")
    nr <- ceiling(n/8)
    ans <- .Call(bitsplits_multiPhylo, x, n, nr)
    nc <- ans[[3]]
    if (nc) {
        o <- ans[[1]][1:(nr * nc)]
        freq <- ans[[2]][1:nc]
    } else {
        o <- raw()
        freq <- integer()
    }
    dim(o) <- c(nr, nc)
    structure(list(matsplit = o, labels = labs, freq = freq),
              class = "bitsplits")
}

countBipartitions <- function(phy, X)
{
    split <- bitsplits(phy)
    SPLIT <- bitsplits(X)
    .Call("CountBipartitionsFromSplits", split, SPLIT)
}