1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
## binaryPGLMM.R (2015-03-04)
## Phylogenetic Generalized Linear Mixed Model for Binary Data
## Copyright 2015 Anthony R. Ives
## This file is part of the R-package `ape'.
## See the file ../COPYING for licensing issues.
binaryPGLMM <- function(formula, data = list(), phy, s2.init = 0.1, B.init = NULL,
tol.pql = 10^-6, maxit.pql = 200, maxit.reml = 100) {
# Begin pglmm.reml
pglmm.reml <- function(par, tinvW, tH, tVphy, tX) {
n <- dim(tX)[1]
p <- dim(tX)[2]
ss2 <- abs(Re(par))
Cd <- ss2 * tVphy
V <- tinvW + Cd
LL <- 10^10
if (sum(is.infinite(V)) == 0) { # & rcond(V) < 10^10) {
if (all(eigen(V)$values > 0)) { #if(rcond(V) > 10^-10 & all(eigen(V)$values > 0)) {
invV <- solve(V)
logdetV <- determinant(V)$modulus[1]
if (is.infinite(logdetV)) {
cholV <- chol(V)
logdetV <- 2 * sum(log(diag(chol(V))))
}
LL <- logdetV + t(tH) %*% invV %*% tH + determinant(t(tX) %*%
invV %*% tX)$modulus[1]
}
}
return(LL)
}
# End pglmm.reml
if (!inherits(phy, "phylo"))
stop("Object \"phy\" is not of class \"phylo\".")
if (is.null(phy$edge.length))
stop("The tree has no branch lengths.")
if (is.null(phy$tip.label))
stop("The tree has no tip labels.")
phy <- reorder(phy, "postorder")
n <- length(phy$tip.label)
mf <- model.frame(formula = formula, data = data)
if (nrow(mf) != length(phy$tip.label))
stop("Number of rows of the design matrix does not match with length of the tree.")
if (is.null(rownames(mf))) {
warning("No tip labels, order assumed to be the same as in the tree.\n")
data.names = phy$tip.label
} else data.names = rownames(mf)
order <- match(data.names, phy$tip.label)
if (sum(is.na(order)) > 0) {
warning("Data names do not match with the tip labels.\n")
rownames(mf) <- data.names
} else {
tmp <- mf
rownames(mf) <- phy$tip.label
mf[order, ] <- tmp[1:nrow(tmp), ]
}
X <- model.matrix(attr(mf, "terms"), data = mf)
y <- model.response(mf)
if (sum(!(y %in% c(0, 1)))) {
stop("PGLMM.binary requires a binary response (dependent variable).")
}
if (var(y) == 0) {
stop("The response (dependent variable) is always 0 or always 1.")
}
p <- ncol(X)
Vphy <- vcv(phy)
Vphy <- Vphy/max(Vphy)
Vphy/exp(determinant(Vphy)$modulus[1]/n)
# Compute initial estimates if not provided assuming no phylogeny
if (!is.null(B.init) & length(B.init) != p) {
warning("B.init not correct length, so computed B.init using glm()")
}
if (is.null(B.init) | (!is.null(B.init) & length(B.init) != p)) {
B.init <- t(matrix(glm(formula = formula, data = data, family = "binomial")$coefficients, ncol = p))
}
B <- B.init
s2 <- s2.init
b <- matrix(0, nrow = n)
beta <- rbind(B, b)
mu <- exp(X %*% B)/(1 + exp(X %*% B))
XX <- cbind(X, diag(1, nrow = n, ncol = n))
C <- s2 * Vphy
est.s2 <- s2
est.B <- B
oldest.s2 <- 10^6
oldest.B <- matrix(10^6, nrow = length(est.B))
iteration <- 0
exitflag <- 0
rcondflag <- 0
while (((t(est.s2 - oldest.s2) %*% (est.s2 - oldest.s2) > tol.pql^2) |
(t(est.B - oldest.B) %*% (est.B - oldest.B)/length(B) > tol.pql^2)) &
(iteration <= maxit.pql)) {
iteration <- iteration + 1
oldest.s2 <- est.s2
oldest.B <- est.B
est.B.m <- B
oldest.B.m <- matrix(10^6, nrow = length(est.B))
iteration.m <- 0
# mean component
while ((t(est.B.m - oldest.B.m) %*% (est.B.m - oldest.B.m)/length(B) >
tol.pql^2) & (iteration.m <= maxit.pql)) {
iteration.m <- iteration.m + 1
oldest.B.m <- est.B.m
invW <- diag(as.vector((mu * (1 - mu))^-1))
V <- invW + C
# This flags cases in which V has a very high condition number, which will cause solve() to fail.
if (sum(is.infinite(V)) > 0 | rcond(V) < 10^-10) {
rcondflag <- rcondflag + 1
B <- 0 * B.init + 0.001
b <- matrix(0, nrow = n)
beta <- rbind(B, b)
mu <- exp(X %*% B)/(1 + exp(X %*% B))
oldest.B.m <- matrix(10^6, nrow = length(est.B))
invW <- diag(as.vector((mu * (1 - mu))^-1))
V <- invW + C
}
invV <- solve(V)
Z <- X %*% B + b + (y - mu)/(mu * (1 - mu))
denom <- t(X) %*% invV %*% X
num <- t(X) %*% invV %*% Z
B <- as.matrix(solve(denom, num))
b <- C %*% invV %*% (Z - X %*% B)
beta <- rbind(B, b)
mu <- exp(XX %*% beta)/(1 + exp(XX %*% beta))
est.B.m <- B
}
# variance component
H <- Z - X %*% B
opt <- optim(fn = pglmm.reml, par = s2, tinvW = invW, tH = H, tVphy = Vphy,
tX = X, method = "BFGS", control = list(factr = 1e+12, maxit = maxit.reml))
s2 <- abs(opt$par)
C <- s2 * Vphy
est.s2 <- s2
est.B <- B
}
convergeflag <- "converged"
if (iteration >= maxit.pql | rcondflag >= 3) {
convergeflag <- "Did not converge; try increasing maxit.pql or starting with B.init values of .001"
}
converge.test.s2 <- (t(est.s2 - oldest.s2) %*% (est.s2 - oldest.s2))^0.5
converge.test.B <- (t(est.B - oldest.B) %*% (est.B - oldest.B))^0.5/length(est.B)
# Extract parameters
invW <- diag(as.vector((mu * (1 - mu))^-1))
V <- invW + C
invV <- solve(V)
Z <- X %*% B + b + (y - mu)/(mu * (1 - mu))
denom <- t(X) %*% invV %*% X
num <- t(X) %*% invV %*% Z
B <- solve(denom, num)
b <- C %*% invV %*% (Z - X %*% B)
beta <- rbind(B, b)
mu <- exp(XX %*% beta)/(1 + exp(XX %*% beta))
H <- Z - X %*% B
B.cov <- solve(t(X) %*% invV %*% X)
B.se <- as.matrix(diag(B.cov))^0.5
B.zscore <- B/B.se
B.pvalue <- 2 * pnorm(abs(B/B.se), lower.tail = FALSE)
LL <- opt$value
lnlike.cond.reml <- -0.5 * (n - p) * log(2 * pi) + 0.5 * determinant(t(X) %*%
X)$modulus[1] - 0.5 * LL
LL0 <- pglmm.reml(par = 0, tinvW = invW, tH = H, tVphy = Vphy, tX = X)
lnlike.cond.reml0 <- -0.5 * (n - p) * log(2 * pi) + 0.5 * determinant(t(X) %*%
X)$modulus[1] - 0.5 * LL0
P.H0.s2 <- pchisq(2 * (lnlike.cond.reml - lnlike.cond.reml0), df = 1,
lower.tail = F)/2
results <- list(formula = formula, B = B, B.se = B.se, B.cov = B.cov,
B.zscore = B.zscore, B.pvalue = B.pvalue, s2 = s2, P.H0.s2 = P.H0.s2,
mu = mu, b = b, B.init = B.init, X = X, H = H, VCV = Vphy, V = V,
convergeflag = convergeflag, iteration = iteration, converge.test.s2 = converge.test.s2,
converge.test.B = converge.test.B, rcondflag = rcondflag)
class(results) <- "binaryPGLMM"
results
}
### binaryPGLMM.sim
binaryPGLMM.sim <- function(formula, data = list(), phy, s2 = NULL, B = NULL,
nrep = 1) {
if (!inherits(phy, "phylo"))
stop("Object \"phy\" is not of class \"phylo\".")
if (is.null(phy$edge.length))
stop("The tree has no branch lengths.")
if (is.null(phy$tip.label))
stop("The tree has no tip labels.")
phy <- reorder(phy, "postorder")
n <- length(phy$tip.label)
mf <- model.frame(formula = formula, data = data)
if (nrow(mf) != length(phy$tip.label))
stop("Number of rows of the design matrix does not match with length of the tree.")
if (is.null(rownames(mf))) {
warning("No tip labels, order assumed to be the same as in the tree.\n")
data.names = phy$tip.label
} else data.names = rownames(mf)
order <- match(data.names, phy$tip.label)
if (sum(is.na(order)) > 0) {
warning("Data names do not match with the tip labels.\n")
rownames(mf) <- data.names
} else {
tmp <- mf
rownames(mf) <- phy$tip.label
mf[order, ] <- tmp[1:nrow(tmp), ]
}
if (is.null(s2))
stop("You must specify s2")
if (is.null(B))
stop("You must specify B")
X <- model.matrix(attr(mf, "terms"), data = mf)
n <- nrow(X)
p <- ncol(X)
V <- vcv(phy)
V <- V/max(V)
V <- vcv(phy)
V <- V/max(V)
V/exp(determinant(V)$modulus[1]/n)
V <- s2 * V
if (s2 > 10^-8) {
iD <- t(chol(V))
} else {
iD <- matrix(0, nrow = n, ncol = n)
}
Y <- matrix(0, nrow = n, ncol = nrep)
y <- matrix(0, nrow = n, ncol = nrep)
for (i in 1:nrep) {
y[, i] <- X %*% B + iD %*% rnorm(n = n)
p <- 1/(1 + exp(-y[, i]))
Y[, i] <- as.numeric(runif(n = n) < p)
}
results <- list(Y = Y, y = y, X = X, s2 = s2, B = B, V = V)
return(results)
}
### print.binaryPGLMM
print.binaryPGLMM <- function(x, digits = max(3, getOption("digits") - 3),
...) {
cat("\n\nCall:")
print(x$formula)
cat("\n")
cat("Random effect (phylogenetic signal s2):\n")
w <- data.frame(s2 = x$s2, Pr = x$P.H0.s2)
print(w, digits = digits)
cat("\nFixed effects:\n")
coef <- data.frame(Value = x$B, Std.Error = x$B.se, Zscore = x$B.zscore,
Pvalue = x$B.pvalue)
printCoefmat(coef, P.values = TRUE, has.Pvalue = TRUE)
cat("\n")
}
|