1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252
|
## chronopl.R (2012-02-09)
## Molecular Dating With Penalized Likelihood
## Copyright 2005-2012 Emmanuel Paradis
## This file is part of the R-package `ape'.
## See the file ../COPYING for licensing issues.
chronopl <-
function(phy, lambda, age.min = 1, age.max = NULL,
node = "root", S = 1, tol = 1e-8,
CV = FALSE, eval.max = 500, iter.max = 500, ...)
{
n <- length(phy$tip.label)
ROOT <- n + 1L
if (identical(node, "root")) node <- ROOT
if (any(node <= n))
stop("node numbers should be greater than the number of tips")
zerobl <- which(phy$edge.length <= 0)
if (length(zerobl)) {
if (any(phy$edge[zerobl, 2] <= n))
stop("at least one terminal branch is of length zero:
you should remove it to have a meaningful estimation.")
else {
warning("at least one internal branch is of length zero:
it was collapsed and some nodes have been deleted.")
if (length(node) == 1 && node == ROOT)
phy <- di2multi(phy)
else {
tmp <- FALSE
if (is.null(phy$node.label)) {
tmp <- !tmp
phy$node.label <- paste("node", 1:phy$Nnode)
}
node.lab <- phy$node.label[node - n]
phy <- di2multi(phy)
node <- match(node.lab, phy$node.label) + n
if (tmp) phy$node.label <- NULL
}
}
}
m <- phy$Nnode
el <- phy$edge.length
e1 <- phy$edge[, 1L]
e2 <- phy$edge[, 2L]
N <- length(e1)
TIPS <- 1:n
EDGES <- 1:N
ini.rate <- el
el <- el/S
## `basal' contains the indices of the basal edges
## (ie, linked to the root):
basal <- which(e1 == ROOT)
Nbasal <- length(basal)
## `ind' contains in its 1st column the index of all nonbasal
## edges, and in its second column the index of the edges
## where these edges come from (ie, this matrix contains pairs
## of contiguous edges), eg:
## ___b___ ind:
## | | | |
## ___a___| | b | a |
## | | c | a |
## |___c___ | | |
ind <- matrix(0L, N - Nbasal, 2)
ind[, 1] <- EDGES[-basal]
ind[, 2] <- match(e1[EDGES[-basal]], e2)
age <- numeric(n + m)
### This bit sets 'ini.time' and should result in no negative branch lengths
seq.nod <- .Call("seq_root2tip", phy$edge, n, phy$Nnode, PACKAGE = "ape")
ini.time <- age
ini.time[ROOT:(n + m)] <- NA
ini.time[node] <- if (is.null(age.max)) age.min else (age.min + age.max) / 2
## if no age given for the root, find one approximately:
if (is.na(ini.time[ROOT]))
ini.time[ROOT] <- if (is.null(age.max)) 3 * max(age.min) else 3 * max(age.max)
ISnotNA.ALL <- unlist(lapply(seq.nod, function(x) sum(!is.na(ini.time[x]))))
o <- order(ISnotNA.ALL, decreasing = TRUE)
for (y in seq.nod[o]) {
ISNA <- is.na(ini.time[y])
if (any(ISNA)) {
i <- 2L # we know the 1st value is not NA, so we start at the 2nd one
while (i <= length(y)) {
if (ISNA[i]) { # we stop at the next NA
j <- i + 1L
while (ISNA[j]) j <- j + 1L # look for the next non-NA
nb.val <- j - i
by <- (ini.time[y[i - 1L]] - ini.time[y[j]]) / (nb.val + 1)
ini.time[y[i:(j - 1L)]] <- ini.time[y[i - 1L]] - by * seq_len(nb.val)
i <- j + 1L
} else i <- i + 1L
}
}
}
real.edge.length <- ini.time[e1] - ini.time[e2]
if (any(real.edge.length <= 0))
stop("some initial branch lengths are zero or negative;
maybe you need to adjust the given dates -- see '?chronopl' for details")
## because if (!is.null(age.max)), 'node' is modified,
## so we copy it in case CV = TRUE:
node.bak <- node
## `unknown.ages' will contain the index of the nodes of unknown age:
unknown.ages <- n + 1:m
## define the bounds for the node ages:
lower <- rep(tol, length(unknown.ages))
upper <- rep(1/tol, length(unknown.ages))
if (!is.null(age.max)) { # are some nodes known within some intervals?
lower[node - n] <- age.min
upper[node - n] <- age.max
## find nodes known within an interval:
interv <- which(age.min != age.max)
## drop them from the 'node' since they will be estimated:
node <- node[-interv]
if (length(node)) age[node] <- age.min[-interv] # update 'age'
} else age[node] <- age.min
if (length(node)) {
unknown.ages <- unknown.ages[n - node] # 'n - node' is simplification for '-(node - n)'
lower <- lower[n - node]
upper <- upper[n - node]
}
## `known.ages' contains the index of all nodes (internal and
## terminal) of known age:
known.ages <- c(TIPS, node)
## concatenate the bounds for the rates:
lower <- c(rep(tol, N), lower)
upper <- c(rep(1 - tol, N), upper)
minusploglik.gr <- function(rate, node.time) {
grad <- numeric(N + length(unknown.ages))
age[unknown.ages] <- node.time
real.edge.length <- age[e1] - age[e2]
if (any(real.edge.length < 0)) {
grad[] <- 0
return(grad)
}
## gradient for the rates:
## the parametric part can be calculated without a loop:
grad[EDGES] <- real.edge.length - el/rate
if (Nbasal == 2) { # the simpler formulae if there's a basal dichotomy
grad[basal[1]] <-
grad[basal[1]] + lambda*(rate[basal[1]] - rate[basal[2]])
grad[basal[2]] <-
grad[basal[2]] + lambda*(rate[basal[2]] - rate[basal[1]])
} else { # the general case
for (i in 1:Nbasal)
grad[basal[i]] <- grad[basal[i]] +
lambda*(2*rate[basal[i]]*(1 - 1/Nbasal) -
2*sum(rate[basal[-i]])/Nbasal)/(Nbasal - 1)
}
for (i in EDGES) {
ii <- c(which(e2 == e1[i]), which(e1 == e2[i]))
if (!length(ii)) next
grad[i] <- grad[i] + lambda*(2*length(ii)*rate[i] - 2*sum(rate[ii]))
}
## gradient for the 'node times'
for (i in 1:length(unknown.ages)) {
nd <- unknown.ages[i]
ii <- which(e1 == nd)
grad[i + N] <-
sum(rate[ii] - el[ii]/real.edge.length[ii])#, na.rm = TRUE)
if (nd != ROOT) {
ii <- which(e2 == nd)
grad[i + N] <- grad[i + N] -
rate[ii] + el[ii]/real.edge.length[ii]
}
}
grad
}
minusploglik <- function(rate, node.time) {
age[unknown.ages] <- node.time
real.edge.length <- age[e1] - age[e2]
if (any(real.edge.length < 0)) return(1e50)
B <- rate*real.edge.length
loglik <- sum(-B + el*log(B) - lfactorial(el))
-(loglik - lambda*(sum((rate[ind[, 1]] - rate[ind[, 2]])^2)
+ var(rate[basal])))
}
out <- nlminb(c(ini.rate, ini.time[unknown.ages]),
function(p) minusploglik(p[EDGES], p[-EDGES]),
function(p) minusploglik.gr(p[EDGES], p[-EDGES]),
control = list(eval.max = eval.max, iter.max = iter.max, ...),
lower = lower, upper = upper)
attr(phy, "ploglik") <- -out$objective
attr(phy, "rates") <- out$par[EDGES]
attr(phy, "message") <- out$message
age[unknown.ages] <- out$par[-EDGES]
if (CV) ophy <- phy
phy$edge.length <- age[e1] - age[e2]
if (CV) attr(phy, "D2") <-
chronopl.cv(ophy, lambda, age.min, age.max, node.bak,
n, S, tol, eval.max, iter.max, ...)
phy
}
chronopl.cv <- function(ophy, lambda, age.min, age.max, nodes,
n, S, tol, eval.max, iter.max, ...)
### ophy: the original phylogeny
### n: number of tips
### Note that we assume here that the order of the nodes
### in node.label are not modified by the drop.tip operation
{
cat("Doing cross-validation\n")
BT <- branching.times(ophy)
D2 <- numeric(n)
for (i in 1:n) {
cat("\r dropping tip ", i, " / ", n, sep = "")
tr <- drop.tip(ophy, i)
j <- which(ophy$edge[, 2] == i)
if (ophy$edge[j, 1] %in% nodes) {
k <- which(nodes == ophy$edge[j, 1])
node <- nodes[-k]
agemin <- age.min[-k]
agemax <- age.max[-k]
} else node <- nodes
if (length(node)) {
chr <- chronopl(tr, lambda, age.min, age.max, node,
S, tol, FALSE, eval.max, iter.max, ...)
tmp <-
if (Nnode(chr) == Nnode(ophy)) BT else BT[-(ophy$edge[j, 1] - n)]
D2[i] <- sum((tmp - branching.times(chr))^2 / tmp)
} else D2[i] <- 0
}
cat("\n")
D2
}
|