File: chronos.R

package info (click to toggle)
r-cran-ape 5.8-1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,676 kB
  • sloc: ansic: 7,676; cpp: 116; sh: 17; makefile: 2
file content (563 lines) | stat: -rw-r--r-- 21,706 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
## chronos.R (2021-09-23)

##   Molecular Dating With Penalized and Maximum Likelihood

## Copyright 2013-2021 Emmanuel Paradis, 2018-2020 Santiago Claramunt, 2020 Guillaume Louvel

## This file is part of the R-package `ape'.
## See the file ../COPYING for licensing issues.

.chronos.ctrl <-
    list(tol = 1e-8, iter.max = 1e4, eval.max = 1e4, nb.rate.cat = 10,
         dual.iter.max = 20, epsilon = 1e-6)

makeChronosCalib <-
    function(phy, node = "root", age.min = 1, age.max = age.min,
             interactive = FALSE, soft.bounds = FALSE)
{
    n <- Ntip(phy)
    if (interactive) {
        plot(phy)
        cat("Click close to a node and enter the ages (right-click to exit)\n\n")
        node <- integer()
        age.min <- age.max <- numeric()
        repeat {
            ans <- identify(phy, quiet = TRUE)
            if (is.null(ans)) break
            NODE <- ans$nodes
            nodelabels(node = NODE, col = "white", bg = "blue")
            cat("constraints for node ", NODE, sep = "")
            cat("\n  youngest age: ")
            AGE.MIN <- as.numeric(readLines(n = 1))
            cat("  oldest age (ENTER if not applicable): ")
            AGE.MAX <- as.numeric(readLines(n = 1))
            node <- c(node, NODE)
            age.min <- c(age.min, AGE.MIN)
            age.max <- c(age.max, AGE.MAX)
        }
        s <- is.na(age.max)
        if (any(s)) age.max[s] <- age.min[s]
    } else {
        if (identical(node, "root")) node <- n + 1L
    }

    if (any(node <= n))
        stop("node numbers should be greater than the number of tips")

    diff.age <- which(age.max < age.min)
    if (length(diff.age)) {
        msg <- "'old age' less than 'young age' for node"
        if (length(diff.age) > 1) msg <- paste(msg, "s", sep = "")
        stop(paste(msg, paste(node[diff.age], collapse = ", ")))
    }

    data.frame(node, age.min, age.max, soft.bounds = soft.bounds)
}

next.calib <- function(y, ini.time) # added by GL (2020-01-29)
{
    times <- ini.time[y]
    runs.na <- rle(is.na(times))
    next.calib.i <- cumsum(runs.na$lengths)[runs.na$values] + 1
    ini.time[y[next.calib.i]]
    ##return(ncal)  #if(length(ncal)){ncal}else{-1})
}

chronos.control <- function(...)
{
    dots <- list(...)
    x <- .chronos.ctrl
    if (length(dots)) {
        chk.nms <- names(dots) %in% names(x)
        if (any(!chk.nms)) {
            warning("some control parameter names do not match: they were ignored")
            dots <- dots[chk.nms]
        }
        x[names(dots)] <- dots
    }
    x
}

chronos <-
    function(phy, lambda = 1, model = "correlated", quiet = FALSE,
             calibration = makeChronosCalib(phy),
             control = chronos.control())
{
    model <- match.arg(tolower(model), c("correlated", "relaxed", "discrete", "clock"))
    if (model == "clock") {
        model <- "discrete"
        control$nb.rate.cat <- 1
    }
    n <- Ntip(phy)
    ROOT <- n + 1L
    m <- phy$Nnode
    el <- phy$edge.length
    if (is.null(el)) stop("the tree has no branch lengths")
    if (any(el < 0)) stop("some branch lengths are negative")
    e1 <- phy$edge[, 1L]
    e2 <- phy$edge[, 2L]
    N <- length(e1)
    TIPS <- 1:n
    EDGES <- 1:N

    tol <- control$tol

    node <- calibration$node
    age.min <- calibration$age.min
    age.max <- calibration$age.max
    ## Starting points of node ages to *estimate*. Calibrated nodes can be NA.
    age.start <- # added by GL (2020-01-29)
        if (is.null(calibration$age.start)) rep(NA_real_, length(node)) else calibration$age.start

    if (model == "correlated") {
### `basal' contains the indices of the basal edges
### (ie, linked to the root):
        basal <- which(e1 == ROOT)
        Nbasal <- length(basal)

### 'ind1' contains the index of all nonbasal edges, and 'ind2' the
### index of the edges where these edges come from (ie, they contain
### pairs of contiguous edges), eg:

###         ___b___    ind1  ind2
###        |           |   ||   |
### ___a___|           | b || a |
###        |           | c || a |
###        |___c___    |   ||   |

        ind1 <- EDGES[-basal]
        ind2 <- match(e1[EDGES[-basal]], e2)
    }

    age <- numeric(n + m)

    lfactorial.el <- lfactorial(el) # Calculate the factorials here once (SC)

### This bit sets 'ini.time' and should result in no negative branch lengths

    if (!quiet) cat("\nSetting initial dates...\n")
    seq.nod <- .Call(seq_root2tip, phy$edge, n, phy$Nnode)

    ## 'fact.root' is used to approximate the age of the root if it is not given;
    ## it is multiplied by 1.5 every 100 tries of the initiation loop (see below)
    ## (added 2017-11-21)
    fact.root <- 3
    ii <- 1L
    repeat {
        ini.time <- age
        ini.time[ROOT:(n + m)] <- NA

        ##ini.time[node] <-
        ##    if (is.null(age.max)) age.min
        ##    else runif(length(node), age.min, age.max) # (age.min + age.max) / 2
        ## added by GL (2020-01-29):
        ini.time[node] <- ifelse(is.na(age.start),
                                 if (is.null(age.max)) age.min
                                 else runif(length(node), age.min, age.max),
                                 age.start)

        ## if no age given for the root, find one approximately:
        if (is.na(ini.time[ROOT]))
            ini.time[ROOT] <- fact.root * max(if (is.null(age.max)) age.min else age.max)

        ##ISnotNA.ALL <- unlist(lapply(seq.nod, function(x) sum(!is.na(ini.time[x]))))
        ##o <- order(ISnotNA.ALL, decreasing = TRUE)

        ## added by GL (2020-01-29):
        ## For each path to the leaves, return the calibrations following the last NA.
        calibs.after.NA <- lapply(seq.nod, next.calib, ini.time)

        ## This recycles shorter elements, but doesn't matter with the order() function
        L <- max(sapply(calibs.after.NA, length))
        calibs.df <-
            as.data.frame(do.call(rbind, lapply(calibs.after.NA,
                                                function(r) c(r, rep(-1, L - length(r))))))
        o <- do.call(order, c(calibs.df, decreasing = TRUE))

        for (y in seq.nod[o]) {
            ISNA <- is.na(ini.time[y])
            if (any(ISNA)) {
                i <- 2L # we know the 1st value is not NA, so we start at the 2nd one
                while (i <= length(y)) {
                    if (ISNA[i]) { # we stop at the next NA
                        j <- i + 1L
                        while (ISNA[j]) j <- j + 1L # look for the next non-NA
                        nb.val <- j - i
                        by <- (ini.time[y[i - 1L]] - ini.time[y[j]]) / (nb.val + 1)
                        ini.time[y[i:(j - 1L)]] <- ini.time[y[i - 1L]] - by * seq_len(nb.val)
                        i <- j + 1L
                    } else i <- i + 1L
                }
            }
        }
        if (all(ini.time[e1] - ini.time[e2] >= 0)) break
        ii <- ii + 1L
        if (ii > 1000)
            stop("cannot find reasonable starting dates after 1000 tries:
maybe you need to adjust the calibration dates")
        if (!(ii %% 100)) fact.root <- fact.root * 1.5
    }
### 'ini.time' set

    #ini.time[ROOT:(n+m)] <- branching.times(chr.dis)
    ## ini.time[ROOT:(n+m)] <- ini.time[ROOT:(n+m)] + rnorm(m, 0, 5)
    #print(ini.time)


### Setting 'ini.rate'
    ini.rate <- el/(ini.time[e1] - ini.time[e2])

    if (model == "discrete") {
        Nb.rates <- control$nb.rate.cat
        if (Nb.rates > N) {
            Nb.rates <- N
            warning("'nb.rate.cat' > number of branches: used nb.rate.cat = # of branches instead", call. = FALSE)
        }
        minmax <- range(ini.rate)
        if (Nb.rates == 1) {
            ini.rate <- sum(minmax)/2
        } else {
            ##inc <- diff(minmax)/Nb.rates
            ##ini.rate <- seq(minmax[1] + inc/2, minmax[2] - inc/2, inc)
            ini.rate <- quantile(ini.rate, seq(1/(2 * Nb.rates), by = 1/Nb.rates, length.out = Nb.rates))
            names(ini.rate) <- NULL
            ini.freq <- rep(1/Nb.rates, Nb.rates - 1)
            lower.freq <- rep(0, Nb.rates - 1)
            upper.freq <- rep(1, Nb.rates - 1)
        }
    } else Nb.rates <- N
## 'ini.rate' set

### Setting bounds for the node ages

    ## `unknown.ages' will contain the index of the nodes of unknown age:
    unknown.ages <- 1:m + n

    ## initialize vectors for all nodes:
    lower.age <- rep(tol, m)
    upper.age <- rep(1/tol, m)

    lower.age[node - n] <- age.min
    upper.age[node - n] <- age.max

    ## find nodes known within an interval:
    ii <- which(is.na(age.min) | (age.min != age.max))
    ## drop them from 'node' since they will be estimated:
    if (length(ii)) {
        node <- node[-ii]
        if (length(node))
            age[node] <- age.min[-ii] # update 'age'
    } else age[node] <- age.min

    ## finally adjust the 3 vectors:
    if (length(node)) {
        unknown.ages <- unknown.ages[n - node] # 'n - node' is simplification for '-(node - n)'
        lower.age <- lower.age[n - node]
        upper.age <- upper.age[n - node]
    }
### Bounds for the node ages set

    ## 'known.ages' contains the index of all nodes
    ## (internal and terminal) of known age:
    known.ages <- c(TIPS, node)

    ## the bounds for the rates:
    lower.rate <- rep(tol, Nb.rates)
    upper.rate <- rep(1e5 - tol, Nb.rates)

### Gradient
    degree_node <- tabulate(phy$edge)
    eta_i <- degree_node[e1]
    eta_i[e2 <= n] <- 1L
    ## eta_i[i] is the number of contiguous branches for branch 'i'

    ## use of a list of indices is slightly faster than an incidence matrix
    ## and takes much less memory (60 Kb vs. 8 Mb for n = 500)
    X <- vector("list", N)
    for (i in EDGES) {
        j <- integer()
        if (e1[i] != ROOT) j <- c(j, which(e2 == e1[i]))
        if (e2[i] >= n) j <- c(j, which(e1 == e2[i]))
        X[[i]] <- j
    }
    ## X is a list whose i-th element gives the indices of the branches
    ## that are contiguous to branch 'i'

    ## D_ki and A_ki are defined in the SI of the paper
    D_ki <- match(unknown.ages, e2)
    A_ki <- lapply(unknown.ages, function(x) which(x == e1))

    gradient.poisson <- function(rate, node.time) {
        age[unknown.ages] <- node.time
        real.edge.length <- age[e1] - age[e2]

        ## gradient for the rates:
        gr <- el/rate - real.edge.length

        ## gradient for the dates:
        tmp <- el/real.edge.length - rate
        tmp2 <- tmp[D_ki]
        tmp2[is.na(tmp2)] <- 0
        gr.dates <- sapply(A_ki, function(x) sum(tmp[x])) - tmp2

        c(gr, gr.dates)
    }

    ## gradient of the penalized lik (must be multiplied by -1 before calling nlminb)
    gradient <-
        switch(model,
               "correlated" =
               function(rate, node.time) {
                   gr <- gradient.poisson(rate, node.time)
                   #if (all(gr == 0)) return(gr)

                   ## contribution of the penalty for the rates:
                   gr[RATE] <- gr[RATE] - lambda * 2 * (eta_i * rate - sapply(X, function(x) sum(rate[x])))
                   ## the contribution of the root variance term:
                   if (Nbasal == 1) {
                       return(gr)
                   }
                   if (Nbasal == 2) { # the simpler formulae if there's a basal dichotomy
                       i <- basal[1]
                       j <- basal[2]
                       gr[i] <- gr[i] - lambda * (rate[i] - rate[j])
                       gr[j] <- gr[j] - lambda * (rate[j] - rate[i])
                       return(gr)
                   }
                   ## Nbasal > 2 -- the general case
                   for (i in 1:Nbasal) {
                       j <- basal[i]
                       gr[j] <- gr[j] - lambda*2*(rate[j]*(1 - 1/Nbasal) - sum(rate[basal[-i]])/Nbasal)/(Nbasal - 1)
                   }
                   gr
               },
               "relaxed" =
               function(rate, node.time) {
                   gr <- gradient.poisson(rate, node.time)
                   #if (all(gr == 0)) return(gr)

                   ## contribution of the penalty for the rates:
                   mean.rate <- mean(rate)
                   ## rank(rate)/Nb.rates is the same than ecdf(rate)(rate) but faster
                   gr[RATE] <- gr[RATE] + lambda*2*dgamma(rate, mean.rate)*(rank(rate)/Nb.rates - pgamma(rate, mean.rate))
                   gr
               },
               "discrete" = NULL)

    log.lik.poisson <- function(rate, node.time) {
        age[unknown.ages] <- node.time
        real.edge.length <- age[e1] - age[e2]
        if (isTRUE(any(real.edge.length < 0))) return(-1e100)
        B <- rate * real.edge.length
        sum(el * log(B) - B - lfactorial.el)
    }

    ## New function for incorporating multiple rate categories (by SC).
    ## This one calculates the conditional probability for each branch
    ## and rate regime, and then computes a weighted average (using the
    ## frequencies as weights) before summing logs across branches.
    log.lik.poisson.discrete <- function(rate, node.time, freq) {
        Freqs <- c(freq, 1 - sum(freq))
        age[unknown.ages] <- node.time
        real.edge.length <- age[e1] - age[e2]
        if (any(real.edge.length < 0)) return(-1e+100)
        ## generate a matrix of branch length rates under each rate regime:
        B <- real.edge.length %*% t(rate)
        ## generate a matrix of likelihood values
        PPs <- exp(el * log(B) - B - lfactorial.el)
        ## matrix multiplication to obtain the weigthed sums for each
        ## branch (the average likelihoods), then sum the
        ## log-likelihoods to obtain the tree likelihood:
        sum(log(PPs %*% Freqs))
    }

### penalized log-likelihood
    penal.loglik <-
        switch(model,
               "correlated" =
               function(rate, node.time) {
                   loglik <- log.lik.poisson(rate, node.time)
                   if (!is.finite(loglik)) return(-1e100)
                   res <- loglik - lambda * sum((rate[ind1] - rate[ind2])^2)
                   if (Nbasal > 1) res <- res + lambda * var(rate[basal])
                   res
               },
               "relaxed" =
               function(rate, node.time) {
                   loglik <- log.lik.poisson(rate, node.time)
                   if (!is.finite(loglik)) return(-1e100)
                   mu <- mean(rate)
                   ## loglik - lambda * sum((1:N/N - pbeta(sort(rate), mu/(1 + mu), 1))^2) # avec loi beta
                   ## loglik - lambda * sum((1:N/N - pcauchy(sort(rate)))^2) # avec loi Cauchy
                   loglik - lambda * sum((1:N/N - pgamma(sort(rate), mean(rate)))^2) # avec loi Gamma
               },
               "discrete" =
               if (Nb.rates == 1)
                   function(rate, node.time) log.lik.poisson(rate, node.time)
               else function(rate, node.time, freq) {
                   if (sum(freq) > 1) return(-1e100)
                   ## rate.freq <- sum(c(freq, 1 - sum(freq)) * rate)
                   ## log.lik.poisson(rate.freq, node.time)
                   log.lik.poisson.discrete(rate, node.time, freq) # by SC
               })

    opt.ctrl <- list(eval.max = control$eval.max, iter.max = control$iter.max)

    ## the following capitalized vectors give the indices of
    ## the parameters once they are concatenated in 'p'
    RATE <- 1:Nb.rates
    AGE <- Nb.rates + 1:length(unknown.ages)

    if (model == "discrete") {
        if (Nb.rates == 1) {
            start.para <- c(ini.rate, ini.time[unknown.ages])
            f <- function(p) -penal.loglik(p[RATE], p[AGE])
            g <- NULL
            LOW <- c(lower.rate, lower.age)
            UP <- c(upper.rate, upper.age)
        } else {
            FREQ <- length(RATE) + length(AGE) + 1:(Nb.rates - 1)
            start.para <- c(ini.rate, ini.time[unknown.ages], ini.freq)
            f <- function(p) -penal.loglik(p[RATE], p[AGE], p[FREQ])
            g <- NULL
            LOW <- c(lower.rate, lower.age, lower.freq)
            UP <- c(upper.rate, upper.age, upper.freq)
        }
    } else {
        start.para <- c(ini.rate, ini.time[unknown.ages])
        f <- function(p) -penal.loglik(p[RATE], p[AGE])
        g <- function(p) -gradient(p[RATE], p[AGE])
        LOW <- c(lower.rate, lower.age)
        UP <- c(upper.rate, upper.age)
    }

    k <- length(LOW) # number of free parameters

    if (!quiet) cat("Fitting in progress... get a first set of estimates\n")

    out <- nlminb(start.para, f, g,
                  control = opt.ctrl, lower = LOW, upper = UP)

    if (model == "discrete") {
        if (Nb.rates == 1) {
            f.rates <- function(p) -penal.loglik(p, current.ages)
            f.ages <- function(p) -penal.loglik(current.rates, p)
        } else {
            f.rates <- function(p) -penal.loglik(p, current.ages, current.freqs)
            f.ages <- function(p) -penal.loglik(current.rates, p, current.freqs)
            f.freqs <- function(p) -penal.loglik(current.rates, current.ages, p)
            g.freqs <- NULL
        }
        g.rates <- NULL
        g.ages <- NULL
    } else {
        f.rates <- function(p) -penal.loglik(p, current.ages)
        g.rates <- function(p) -gradient(p, current.ages)[RATE]
        f.ages <- function(p) -penal.loglik(current.rates, p)
        g.ages <- function(p) -gradient(current.rates, p)[AGE]
    }

    current.ploglik <- -out$objective
    current.rates <- out$par[RATE]
    current.ages <- out$par[AGE]
    if (model == "discrete" && Nb.rates > 1) current.freqs <- out$par[FREQ]

    dual.iter.max <- control$dual.iter.max
    epsilon <- control$epsilon
    i <- 1L # was 0L (2020-05-08)

    if (!quiet) cat("         (Penalised) log-lik =", current.ploglik, "\n")

    repeat {
        if (dual.iter.max < 1) break
        if (i > dual.iter.max) { # added this break here (with a warning) instead of after optimizations (SC)
            warning("Maximum number of dual iterations reached.", call. = FALSE)
            break
        }
        if (!quiet) cat("Optimising rates...")
        out.rates <- nlminb(current.rates, f.rates, g.rates,# h.rates,
                            control = list(eval.max = 1000, iter.max = 1000,
                                           step.min = 1e-8, step.max = .1),
                            lower = lower.rate, upper = upper.rate)
        new.rates <- out.rates$par
        if (-out.rates$objective > current.ploglik)
            current.rates <- new.rates

        if (model == "discrete" && Nb.rates > 1) {
            if (!quiet) cat(" frequencies...")
            out.freqs <- nlminb(current.freqs, f.freqs,
                                control = list(eval.max = 1000, iter.max = 1000,
                                               step.min = .001, step.max = .5),
                                lower = lower.freq, upper = upper.freq)
            new.freqs <- out.freqs$par
        }

        if (!quiet) cat(" dates...")
        out.ages <- nlminb(current.ages, f.ages, g.ages,# h.ages,
                           control = list(eval.max = 1000, iter.max = 1000,
                                          step.min = .001, step.max = 100),
                           lower = lower.age, upper = upper.age)
        new.ploglik <- -out.ages$objective

        if (!quiet) cat("", current.ploglik, "\n")

        delta.ploglik <- new.ploglik - current.ploglik
        if (is.na(delta.ploglik)) break # fix by Daniel Lang
        if (delta.ploglik > epsilon) {
            current.ploglik <- new.ploglik
            current.rates <- new.rates
            current.ages <- out.ages$par
            if (model == "discrete" && Nb.rates > 1) current.freqs <- new.freqs
            out <- out.ages
            i <- i + 1L
        } else break
    }

    ## if (!quiet) cat("\nDone.\n")

    if (model == "discrete") {
        ## rate.freq <-
        logLik <-
            if (Nb.rates == 1) log.lik.poisson(current.rates, current.ages)
            else log.lik.poisson.discrete(current.rates, current.ages, current.freqs)
##            else mean(c(current.freqs, 1 - sum(current.freqs)) * current.rates)
##        logLik <- log.lik.poisson(rate.freq, current.ages)
        PHIIC <- list(logLik = logLik, k = k, PHIIC = -2 * logLik + 2 * k)
    } else {
        logLik <- log.lik.poisson(current.rates, current.ages)
        PHI <- switch(model,
                      "correlated" = (current.rates[ind1] - current.rates[ind2])^2 + ifelse(Nbasal == 1, 0, var(current.rates[basal])),
                      "relaxed" = (1:N/N - pgamma(sort(current.rates), mean(current.rates)))^2) # avec loi Gamma
        PHIIC <- list(logLik = logLik, k = k, lambda = lambda,
                      PHIIC = -2 * logLik + 2 * k + lambda * svd(PHI)$d)
    }

    attr(phy, "call") <- match.call()
    attr(phy, "ploglik") <- -out$objective
    attr(phy, "rates") <- current.rates #out$par[EDGES]
    if (model == "discrete" && Nb.rates > 1)
        attr(phy, "frequencies") <- c(current.freqs, 1 - sum(current.freqs))
    attr(phy, "convergence") <- if (out$convergence == 0) TRUE else FALSE
    attr(phy, "message") <- out$message
    attr(phy, "PHIIC") <- PHIIC
    attr(phy, "niter") <- i
    age[unknown.ages] <- current.ages #out$par[-EDGES]
    phy$edge.length <- age[e1] - age[e2]

    if(!attr(phy, "convergence"))
        warning(attr(phy, "message"), call. = FALSE)
    if (!quiet)
        cat("\nlog-Lik =", logLik, "\nPHIIC =", round(PHIIC$PHIIC, 2),"\n")

    class(phy) <- c("chronos", class(phy))
    phy
}

print.chronos <- function(x, ...)
{
    cat("\n    Chronogram\n\n")
    cat("Call: ")
    print(attr(x, "call"))
    cat("\n")
    NextMethod("print")
}