File: compar.gee.R

package info (click to toggle)
r-cran-ape 5.8-1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,676 kB
  • sloc: ansic: 7,676; cpp: 116; sh: 17; makefile: 2
file content (170 lines) | stat: -rw-r--r-- 6,356 bytes parent folder | download | duplicates (7)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
## compar.gee.R (2015-05-01)

##   Comparative Analysis with GEEs

## Copyright 2002-2015 Emmanuel Paradis

## This file is part of the R-package `ape'.
## See the file ../COPYING for licensing issues.

compar.gee <-
    function(formula, data = NULL, family = gaussian, phy,
             corStruct, scale.fix = FALSE, scale.value = 1)
{
    if (requireNamespace("gee", quietly = TRUE)) gee <- gee::gee
    else stop("package 'gee' not available")

    if (!missing(corStruct)) {
        if (!missing(phy))
            warning("the phylogeny was ignored because you gave a 'corStruct' object")
        R <- vcv(corStruct, corr = TRUE)
    } else {
        R <- vcv(phy, corr = TRUE)
    }

    if (is.null(data)) data <- parent.frame()
    else {
        nmsR <- rownames(R)
        if (!identical(rownames(data), nmsR)) {
            if (!any(is.na(match(rownames(data), nmsR))))
                data <- data[nmsR, ]
            else {
                msg <- if (missing(corStruct))
                    "the tip labels of the tree" else "those of the correlation structure"
                msg <- paste("the rownames of the data.frame and", msg,
                             "do not match: the former were ignored in the analysis")
                warning(msg)
            }
        }
    }

    effect.assign <- attr(model.matrix(formula, data = data), "assign")

    for (i in all.vars(formula)) {
        if (any(is.na(eval(parse(text = i), envir = data))))
          stop("the present method cannot be used with missing data: you may consider removing the species with missing data from your tree with the function 'drop.tip'.")
    }

    id <- rep(1, dim(R)[1])
    geemod <- do.call("gee", list(formula, id, data = data, family = family, R = R,
                                  corstr = "fixed", scale.fix = scale.fix,
                                  scale.value = scale.value))
    W <- geemod$naive.variance
    fname <-
        if (is.function(family)) deparse(substitute(family)) else if (is.list(family)) family$family else family
    if (fname == "binomial")
        W <- summary(glm(formula, family = quasibinomial, data = data))$cov.scaled
    N <- geemod$nobs
    ## <FIXME>
    ## maybe need to refine below in case of non-Brownian corStruct
    if (!missing(corStruct)) phy <- attr(corStruct, "tree")
    dfP <- sum(phy$edge.length)*N / sum(diag(vcv(phy))) # need the variances
    ## </FIXME>

    ## compute QIC:
    Y <- geemod$y
    MU <- geemod$fitted.values
    Qlik <- switch(fname,
                   "gaussian" = -sum((Y - MU)^2)/2,
                   "binomial" = sum(Y*log(MU/(1 - MU)) + log(1 - MU)),
                   "poisson" = sum(Y*log(MU) - MU),
                   "Gamma" = sum(Y/MU + log(MU)),
                   "inverse.gaussian" = sum(-Y/(2*MU^2) + 1/MU))
    Ai <- do.call("gee", list(formula, id, data = data, family = family,
                              corstr = "independence", scale.fix = scale.fix,
                              scale.value = scale.value))$naive.variance
    QIC <- -2*Qlik + 2*sum(diag(solve(Ai) %*% W))

    obj <- list(call = match.call(),
                effect.assign = effect.assign,
                nobs = N,
                QIC = QIC,
                coefficients = geemod$coefficients,
                residuals = geemod$residuals,
                fitted.values = MU,
                family = geemod$family$family,
                link = geemod$family$link,
                scale = geemod$scale,
                W = W,
                dfP = dfP)
    class(obj) <- "compar.gee"
    obj
}

print.compar.gee <- function(x, ...)
{
    nas <- is.na(x$coef)
    coef <- x$coef[!nas]
    cnames <- names(coef)
    coef <- matrix(rep(coef, 4), ncol = 4)
    dimnames(coef) <- list(cnames,
                           c("Estimate", "S.E.", "t", "Pr(T > |t|)"))
    df <- x$dfP - dim(coef)[1]
    coef[, 2] <- sqrt(diag(x$W))
    coef[, 3] <- coef[, 1]/coef[, 2]
    if (df < 0) {
        warning("not enough degrees of freedom to compute P-values.")
        coef[, 4] <- NA
    } else coef[, 4] <- 2 * (1 -  pt(abs(coef[, 3]), df))
    residu <- quantile(as.vector(x$residuals))
    names(residu) <- c("Min", "1Q", "Median", "3Q", "Max")
    cat("Call: ")
    print(x$call)
    cat("Number of observations: ", x$nobs, "\n")
    cat("Model:\n")
    cat("                      Link:", x$link, "\n")
    cat(" Variance to Mean Relation:", x$family, "\n")
    cat("\nQIC:", x$QIC, "\n")
    cat("\nSummary of Residuals:\n")
    print(residu)
    if (any(nas))
        cat("\n\nCoefficients: (", sum(nas), " not defined because of singularities)\n",
            sep = "")
    else cat("\n\nCoefficients:\n")
    print(coef)
    cat("\nEstimated Scale Parameter: ", x$scale)
    cat("\n\"Phylogenetic\" df (dfP): ", x$dfP, "\n")
}

drop1.compar.gee <- function(object, scope, quiet = FALSE, ...)
{
    fm <- formula(object$call)
    trm <- terms(fm)
    z <- attr(trm, "term.labels")
    ind <- object$effect.assign
    n <- length(z)
    ans <- matrix(NA, n, 3)
    for (i in 1:n) {
        wh <- which(ind == i)
        ans[i, 1] <- length(wh)
        ans[i, 2] <- t(object$coefficients[wh]) %*%
          solve(object$W[wh, wh]) %*% object$coefficients[wh]
    }
    df <- object$dfP - length(object$coefficients)
    if (df < 0) warning("not enough degrees of freedom to compute P-values.")
    else ans[, 3] <- pf(ans[, 2], ans[, 1], df, lower.tail = FALSE)
    colnames(ans) <- c("df", "F", "Pr(>F)")
    rownames(ans) <- z
    if (any(attr(trm, "order") > 1) && !quiet)
      warning("there is at least one interaction term in your model:
you should be careful when interpreting the significance of the main effects.")
    class(ans) <- "anova"
    attr(ans, "heading") <- paste("Single term deletions\n\n  Model:",
                                  as.character(as.expression(fm)), "\n")
    ans
}

predict.compar.gee <-
    function(object, newdata = NULL, type = c("link", "response"), ...)
{
    type <- match.arg(type)
    pred <- if (is.null(newdata)) object$fitted.values else {
        frm <- formula(object$call$formula)[-2]
        X <-  model.matrix(frm, data = newdata)
        beta <- object$coefficients
        X[, names(beta), drop = FALSE] %*% beta
    }
    if (type == "link") return(pred)
    f <- match.fun(object$family)
    f(link = object$link)$linkinv(pred)
}