1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497
|
## dist.topo.R (2023-09-08)
## Topological Distances, Tree Bipartitions,
## Consensus Trees, and Bootstrapping Phylogenies
## Copyright 2005-2023 Emmanuel Paradis, 2016-2021 Klaus Schliep
## This file is part of the R-package `ape'.
## See the file ../COPYING for licensing issues.
.getTreesFromDotdotdot <- function(...)
{
obj <- list(...)
if (length(obj) == 1 && !inherits(obj[[1]], "phylo")) obj <- obj[[1]]
obj
}
dist.topo <- function(x, y = NULL, method = "PH85", mc.cores = 1)
{
method <- match.arg(method, c("PH85", "score"))
if (!is.null(y)) x <- c(x, y)
testroot <- any(is.rooted(x))
n <- length(x) # number of trees
nms <- names(x)
if (is.null(nms)) nms <- paste0("tree", 1:n)
if (method == "PH85") {
if (testroot)
warning("Some trees were rooted: topological distances may be spurious.")
x <- .compressTipLabel(x)
ntip <- length(attr(x, "TipLabel"))
nnode <- sapply(x, Nnode)
foo <- function(phy, ntip) {
phy <- reorder(phy, "postorder")
pp <- bipartition2(phy$edge, ntip)
attr(pp, "labels") <- phy$tip.label
ans <- SHORTwise(pp)
sapply(ans, paste, collapse = "\r")
}
if (mc.cores > 1) {
x <- mclapply(x, foo, ntip = ntip, mc.cores = mc.cores)
bar <- function(i) {
y <- x[[i]]
m1 <- nnode[i]
res_sub <- numeric(n - i)
for (j in (i + 1):n) {
z <- x[[j]]
res_sub[j - i] <- m1 + nnode[j] - 2 * sum(z %in% y)
}
res_sub
}
res_list <- mclapply(1:(n - 1), bar, mc.cores = mc.cores)
res <- unlist(res_list)
} else {
x <- lapply(x, foo, ntip = ntip)
k <- 0L
res <- numeric(n * (n - 1) /2)
for (i in 1:(n - 1)) {
y <- x[[i]]
m1 <- nnode[i]
for (j in (i + 1):n) {
z <- x[[j]]
k <- k + 1L
res[k] <- m1 + nnode[j] - 2 * sum(z %in% y)
}
}
}
} else { # method == "score"
NTIP <- Ntip(x)
x <- unroot(x)
fooscore <- function(phy) {
if (is.null(phy$edge.length))
stop("trees must have branch lengths for the branch score distance.")
ntip <- length(phy$tip.label)
phy <- reorder.phylo(phy, "postorder")
bp <- bipartition2(phy$edge, ntip)
lapply(bp, function(x) sort(phy$tip.label[x]))
}
if (mc.cores > 1) {
BP <- mclapply(x, fooscore, mc.cores = mc.cores)
bar <- function(i) {
tr <- x[[i]]
bp <- BP[[i]]
nx <- NTIP[i]
res_sub <- numeric(n - i)
for (j in (i + 1):n)
res_sub[j - i] <- .dist.topo.score(tr, x[[j]], nx, NTIP[j], bp, BP[[j]])
res_sub
}
res_list <- mclapply(1:(n - 1), bar, mc.cores = mc.cores)
res <- unlist(res_list)
} else {
BP <- lapply(x, fooscore)
k <- 0L
res <- numeric(n * (n - 1) /2)
for (i in 1:(n - 1)) {
tr <- x[[i]]
bp <- BP[[i]]
nx <- NTIP[i]
for (j in (i + 1):n) {
k <- k + 1L
res[k] <- .dist.topo.score(tr, x[[j]], nx, NTIP[j], bp, BP[[j]])
}
}
}
}
attr(res, "Size") <- n
attr(res, "Labels") <- nms
attr(res, "Diag") <- attr(res, "Upper") <- FALSE
attr(res, "method") <- method
class(res) <- "dist"
res
}
.dist.topo.score <- function(x, y, nx, ny, bp1, bp2)
{
## ny <- length(y$tip.label) # fix by Otto Cordero
## fix by Tim Wallstrom:
bp2.comp <- lapply(bp2, function(a) sort(y$tip.label[is.na(match(y$tip.label, a))]))
## End
q1 <- length(bp1)
q2 <- length(bp2)
xe2 <- x$edge[, 2]
ye2 <- y$edge[, 2]
xel <- x$edge.length
yel <- y$edge.length
dT <- 0
found1 <- FALSE
found2 <- logical(q2)
found2[1] <- TRUE
for (i in 2:q1) {
for (j in 2:q2) {
if (identical(bp1[[i]], bp2[[j]]) || identical(bp1[[i]], bp2.comp[[j]])) {
dT <- dT + (xel[which(xe2 == nx + i)] - yel[which(ye2 == ny + j)])^2
found1 <- found2[j] <- TRUE
break
}
}
if (found1) found1 <- FALSE
else dT <- dT + (xel[which(xe2 == nx + i)])^2
}
if (!all(found2))
dT <- dT + sum((yel[ye2 %in% (ny + which(!found2))])^2)
sqrt(dT)
}
.compressTipLabel <- function(x, ref = NULL)
{
## 'x' is a list of objects of class "phylo" possibly with no class
if (!is.null(attr(x, "TipLabel"))) return(x)
if (is.null(ref)) ref <- x[[1]]$tip.label
n <- length(ref)
if (length(unique(ref)) != n)
stop("some tip labels are duplicated in tree no. 1")
## serious improvement by Joseph W. Brown!
relabel <- function (y) {
label <- y$tip.label
if (!identical(label, ref)) {
if (length(label) != length(ref))
stop("one tree has a different number of tips")
ilab <- match(label, ref)
if (any(is.na(ilab)))
stop("one tree has different tip labels")
ie <- match(1:n, y$edge[, 2])
y$edge[ie, 2] <- ilab
}
y$tip.label <- NULL
y
}
x <- unclass(x) # another killer improvement by Tucson's hackathon (1/2/2013)
x <- lapply(x, relabel)
attr(x, "TipLabel") <- ref
class(x) <- "multiPhylo"
x
}
prop.part <- function(..., check.labels = TRUE)
{
obj <- .getTreesFromDotdotdot(...)
ntree <- length(obj)
if (ntree == 1) check.labels <- FALSE
if (check.labels) obj <- .compressTipLabel(obj) # fix by Klaus Schliep (2011-02-21)
class(obj) <- NULL # fix by Klaus Schliep (2014-03-06)
for (i in 1:ntree) storage.mode(obj[[i]]$Nnode) <- "integer"
class(obj) <- "multiPhylo"
obj <- reorder(obj, "postorder")
# the following line should not be necessary any more
# obj <- .uncompressTipLabel(obj) # fix a bug (2010-11-18)
nTips <- length(obj[[1]]$tip.label)
clades <- prop_part2(obj, nTips)
attr(clades, "labels") <- obj[[1]]$tip.label
clades
}
print.prop.part <- function(x, ...)
{
if (is.null(attr(x, "labels"))) {
for (i in 1:length(x)) {
cat("==>", attr(x, "number")[i], "time(s):")
print(x[[i]], quote = FALSE)
}
} else {
for (i in 1:length(attr(x, "labels")))
cat(i, ": ", attr(x, "labels")[i], "\n", sep = "")
cat("\n")
for (i in 1:length(x)) {
cat("==>", attr(x, "number")[i], "time(s):")
print(x[[i]], quote = FALSE)
}
}
}
summary.prop.part <- function(object, ...) attr(object, "number")
plot.prop.part <- function(x, barcol = "blue", leftmar = 4, col = "red", ...)
{
if (is.null(attr(x, "labels")))
stop("cannot plot this partition object; see ?prop.part for details.")
L <- length(x)
n <- length(attr(x, "labels"))
layout(matrix(1:2, 2, 1), heights = c(1, 3))
par(mar = c(0.1, leftmar, 0.1, 0.1))
one2L <- seq_len(L)
plot(one2L - 0.5, attr(x, "number"), type = "h", col = barcol, xlim = c(0, L),
xaxs = "i", xlab = "", ylab = "Frequency", xaxt = "n", bty = "n", ...)
M <- matrix(0L, L, n)
for (i in one2L) M[i, x[[i]]] <- 1L
image.default(one2L, 1:n, M, col = c("white", col), xlab = "", ylab = "", yaxt = "n")
mtext(attr(x, "labels"), side = 2, at = 1:n, las = 1)
}
### by Klaus (2016-03-23):
prop.clades <- function(phy, ..., part = NULL, rooted = FALSE)
{
if (is.null(part)) {
obj <- .getTreesFromDotdotdot(...)
## avoid double counting of edges if trees are rooted
if (!rooted) obj <- lapply(obj, unroot)
part <- prop.part(obj, check.labels = TRUE)
}
LABS <- attr(part, "labels")
if (!identical(phy$tip.label, LABS)) {
i <- match(phy$tip.label, LABS)
j <- match(seq_len(Ntip(phy)), phy$edge[, 2])
phy$edge[j, 2] <- i
phy$tip.label <- LABS
}
bp <- prop.part(phy)
if (!rooted) {
## avoid messing up the order and length if phy is rooted in some cases
bp <- SHORTwise(bp)
part <- postprocess.prop.part(part, "SHORTwise")
}
pos <- match(bp, part)
tmp <- which(!is.na(pos))
n <- rep(NA_real_, phy$Nnode)
n[tmp] <- attr(part, "number")[pos[tmp]]
n
}
boot.phylo <-
function(phy, x, FUN, B = 100, block = 1,
trees = FALSE, quiet = FALSE,
rooted = is.rooted(phy), jumble = TRUE,
mc.cores = 1)
{
if (is.null(dim(x)) || length(dim(x)) != 2)
stop("the data 'x' must have two dimensions (e.g., a matrix or a data frame)")
if (anyDuplicated(rownames(x)))
stop("some labels are duplicated in the data: you won't be able to analyse tree bipartitions")
boot.tree <- vector("list", B)
y <- nc <- ncol(x)
nr <- nrow(x)
if (nr < 4 && !trees) {
warning("not enough rows in 'x' to compute bootstrap values.\nSet 'trees = TRUE' if you want to get the bootstrap trees")
return(integer())
}
if (block > 1) {
a <- seq(1, nc - 1, block)
b <- seq(block, nc, block)
y <- mapply(":", a, b, SIMPLIFY = FALSE)
getBootstrapIndices <- function() unlist(sample(y, replace = TRUE))
} else getBootstrapIndices <- function() sample.int(y, replace = TRUE)
if (!quiet) {
prefix <- "\rRunning bootstraps: "
suffix <- paste("/", B)
updateProgress <- function(i) cat(prefix, i, suffix)
}
if (mc.cores == 1) {
for (i in 1:B) {
boot.samp <- x[, getBootstrapIndices()]
if (jumble) boot.samp <- boot.samp[sample.int(nr), ]
boot.tree[[i]] <- FUN(boot.samp)
if (!quiet && !(i %% 100)) updateProgress(i)
}
} else {
if (!quiet) cat("Running parallel bootstraps...")
foo <- function(i) {
boot.samp <- x[, getBootstrapIndices()]
if (jumble) boot.samp <- boot.samp[sample.int(nr), ]
FUN(boot.samp)
}
boot.tree <- mclapply(1:B, foo, mc.cores = mc.cores)
if (!quiet) cat(" done.")
}
if (nr < 4 && trees)
return(list(BP = integer(), trees = boot.tree))
if (!quiet) cat("\nCalculating bootstrap values...")
## sort labels after mixed them up
if (jumble) {
boot.tree <- .compressTipLabel(boot.tree, ref = phy$tip.label)
boot.tree <- .uncompressTipLabel(boot.tree)
boot.tree <- unclass(boot.tree) # otherwise countBipartitions crashes
}
class(boot.tree) <- "multiPhylo"
if (rooted) {
pp <- prop.part(boot.tree)
ans <- prop.clades(phy, part = pp, rooted = rooted)
} else {
phy <- reorder(phy, "postorder")
ints <- phy$edge[, 2] > Ntip(phy)
ans <- countBipartitions(phy, boot.tree)
ans <- c(NA_integer_, ans[order(phy$edge[ints, 2])])
}
if (!quiet) cat(" done.\n")
if (trees) ans <- list(BP = ans, trees = boot.tree)
ans
}
### The next function transforms an object of class "prop.part" so
### that the vectors which are identical in terms of splits are aggregated.
### For instance if n = 5 tips, 1:2 and 3:5 actually represent the same
### split though they are different clades. The aggregation is done
### arbitrarily.
### The call to SHORTwise() insures that all splits are the shortest ones.
### The call to ONEwise() insures that all splits include the first tip.
### (rewritten by Klaus)
postprocess.prop.part <- function(x, method = "ONEwise")
{
w <- attr(x, "number")
labels <- attr(x, "labels")
method <- match.arg(toupper(method), c("ONEWISE", "SHORTWISE"))
FUN <- switch(method, "ONEWISE" = ONEwise, "SHORTWISE" = SHORTwise)
x <- FUN(x)
drop <- duplicated(x)
if (any(drop)) {
ind1 <- match(x[drop], x)
ind2 <- which(drop)
for (i in seq_along(ind2))
w[ind1[i]] <- w[ind1[i]] + w[ind2[i]]
x <- x[!drop]
w <- w[!drop]
}
attr(x, "number") <- w
attr(x, "labels") <- labels
class(x) <- "prop.part"
x
}
### This function changes an object of class "prop.part" so that they
### all include the first tip. For instance if n = 5 tips, 3:5 is
### changed to 1:2.
ONEwise <- function(x)
{
nTips <- length(attr(x, "labels"))
v <- seq_len(nTips)
l <- lengths(x) == 0
if (any(l)) x[l] <- list(v)
for (i in which(!l)) {
y <- x[[i]]
if (y[1] != 1) x[[i]] <- v[-y]
}
x
}
### This function changes an object of class "prop.part" so that they
### all include the shorter part of the partition.
### For instance if n = 5 tips, 1:3 is changed to 4:5. In case n is even, e.g.
### n = 6 similar to ONEwise.
SHORTwise <- function(x) {
## ensures the next line should also work for splits objects from phangorn
nTips <- length(attr(x, "labels"))
v <- seq_len(nTips)
l <- lengths(x)
lv <- nTips / 2
for (i in which(l >= lv)) {
y <- x[[i]]
if (l[i] > lv) {
x[[i]] <- v[-y]
} else { # (l[i] == lv) only possible alternative
if (y[1] != 1)
x[[i]] <- v[-y]
}
}
x
}
consensus <- function(..., p = 1, check.labels = TRUE, rooted = FALSE)
{
foo <- function(ic, node) {
## ic: index of 'pp'
## node: node number in the final tree
pool <- pp[[ic]]
if (ic < m) {
for (j in (ic + 1):m) {
wh <- match(pp[[j]], pool)
if (!any(is.na(wh))) {
edge[pos, 1] <<- node
pool <- pool[-wh]
edge[pos, 2] <<- nextnode <<- nextnode + 1L
pos <<- pos + 1L
foo(j, nextnode)
}
}
}
size <- length(pool)
if (size) {
ind <- pos:(pos + size - 1)
edge[ind, 1] <<- node
edge[ind, 2] <<- pool
pos <<- pos + size
}
}
obj <- .getTreesFromDotdotdot(...)
if (!is.null(attr(obj, "TipLabel")))
labels <- attr(obj, "TipLabel")
else {
labels <- obj[[1]]$tip.label
if (check.labels) obj <- .compressTipLabel(obj)
}
if(!rooted) obj <- root(obj, 1)
ntree <- length(obj)
## Get all observed partitions and their frequencies:
pp <- prop.part(obj, check.labels = FALSE)
if (!rooted) {
pp <- postprocess.prop.part(pp, "SHORTwise")
pp[[1]] <- seq_along(labels)
}
## Drop the partitions whose frequency is less than 'p':
if (p == 0.5) p <- 0.5000001 # avoid incompatible splits
bs <- attr(pp, "number")
sel <- bs >= p * ntree
pp <- pp[sel]
bs <- bs[sel]
lens <- lengths(pp)
if (length(drop <- which(lens == 1))) {
pp <- pp[-drop]
lens <- lens[-drop]
}
## Get the order of the remaining partitions by decreasing size:
ind <- order(lens, decreasing = TRUE)
pp <- pp[ind]
bs <- bs[ind]
n <- length(labels)
m <- length(pp)
edge <- matrix(0L, n + m - 1, 2)
if (m == 1) {
edge[, 1] <- n + 1L
edge[, 2] <- 1:n
} else {
nextnode <- n + 1L
pos <- 1L
foo(1, nextnode)
}
res <- structure(list(edge = edge, tip.label = labels,
Nnode = m), class = "phylo")
res <- reorder(res)
node.label <- prop.clades(res, obj, rooted=rooted)/ntree
res$node.label <- node.label
res
}
|