1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
|
## node.dating.R (2021-03-03)
## This file is part of the R-package `ape'.
## See the file COPYING in the package ape available at cran.r-project.org for licensing issues.
# Copyright (c) 2016, Bradley R. Jones, BC Centre for Excellence in HIV/AIDS
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
# notice, this list of conditions and the following disclaimer in the
# documentation and/or other materials provided with the distribution.
# * Neither the name of the BC Centre for Excellence in HIV/AIDS nor the
# names of its contributors may be used to endorse or promote products
# derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL The BC Centre for Excellence in HIV/AIDS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
# Estimate the mutation rate and node dates based on tip dates.
#
# Felsenstein, Joseph. "Evolutionary trees from DNA sequences: A maximum
# likelihood approach." Journal of Molecular Evolution 17 (1981):368-376.
#
# Rambaut, Andrew. "Estimating the rate of molecular evolution: incorporating
# non-contemporaneous sequences into maximum likelihood phylogenies."
# Bioinformatics 16.4 (2000): 395-399.
# Estimate the mutation rate of a phylogenetic tree from the tip dates using
# linear regression. This model assumes that the tree follows a molecular
# clock.
#
# t: rooted tree with edge lengths equal to genetic distance
#
# tip.dates: vector of dates for the tips, in the same order as t$tip.label.
# Tip dates can be censored with NA values
#
# p: p-value cutoff for failed regression (default=0.05)
#
# returns the mutation rate as a double
estimate.mu <- function(t, node.dates, p.tol=0.05) {
# fit linear model
g <- glm(node.depth.edgelength(t)[1:length(node.dates)] ~ node.dates, na.action=na.omit)
p <- anova(g, test="Chisq")[2,5]
# test fit
if (p > p.tol) {
warning(paste("Cannot reject null hypothesis (p=", p, ")"))
}
coef(g)[[2]]
}
# Estimate the dates of the internal nodes of a phylogenetic tree.
#
# t: rooted tree with edge lengths equal to genetic distance
#
# node.dates: either a vector of dates for the tips, in the same order as
# t$tip.label; or a vector of dates to initalize each node
#
# mu: mutation rate, either a vector of size one for a strict molecular clock
# or a vector with a local molecular clock along each edge
#
# min.date: the minimum date that a node can have (needed for optimize()). The
# default is -.Machine$double.xmax
#
# show.steps: set to print the log likelihood every show.steps. Set to 0 to
# supress output
#
# opt.tol: tolerance for optimization precision. By default, the optimize()
# function uses a tolerance of .Machine$double.eps^0.25 (see ?optimize)
#
# lik.tol: tolerance for likelihood comparison. estimate.dates will stop when
# the log likelihood between successive trees is less than like.tol. If
# 0 will stop after nsteps steps.
#
# nsteps: the maximum number of steps to run. If 0 will run until the log
# likelihood between successive runs is less than lik.tol. The default
# is 1000.
#
# is.binary: if the phylogentic tree is binary, setting is.binary to TRUE, will
# run a optimization method
#
# If lik.tol and nsteps are both 0 then estimate.dates will only run the inital
# step.
#
# returns a vector of the estimated dates of the tips and internal nodes
estimate.dates <- function(t, node.dates, mu = estimate.mu(t, node.dates), min.date = -.Machine$double.xmax, show.steps = 0, opt.tol = 1e-8, nsteps = 1000, lik.tol = 0, is.binary = is.binary.phylo(t)) {
# check parameters
if (any(mu < 0))
stop(paste("mu (", mu, ") less than 0", sep=""))
# init vars
mu <- if (length(mu) == 1) rep(mu, length(t$edge.length)) else mu
n.tips <- length(t$tip.label)
dates <- if (length(node.dates) == n.tips) {
c(node.dates, rep(NA, t$Nnode))
} else if (length(node.dates) == n.tips + t$Nnode) {
node.dates
} else {
stop(paste0("node.dates must be a vector with length equal to the number of tips or equal to the number of nodes plus the number of tips"))
}
lik.sens <- if (lik.tol == 0) opt.tol else lik.tol
# Don't count initial step if all values are seeded
iter.step <- if (any(is.na(dates))) 0 else 1
children <- lapply(1:t$Nnode,
function(x) {
which(t$edge[,1] == x + n.tips)
})
parent <- lapply(1:t$Nnode,
function(x) {
which(t$edge[,2] == x + n.tips)
})
# to process children before parents
nodes <- c(1)
for (i in 1:t$Nnode) {
to.add <- t$edge[children[[nodes[i]]], 2] - n.tips
nodes <- c(nodes, to.add[to.add > 0])
i <- i + 1
}
nodes <- rev(nodes)
# calculate likelihood functions
scale.lik <- sum(-lgamma(t$edge.length+1)+(t$edge.length+1)*log(mu))
calc.Like <- function(ch.node, ch.edge, x) {
tim <- ch.node - x
t$edge.length[ch.edge]*log(tim)-mu[ch.edge]*tim
}
opt.fun <- function(x, ch, p, ch.edge, p.edge, use.parent=T) {
sum(if (!use.parent || length(dates[p]) == 0 || is.na(dates[p])) {
calc.Like(dates[ch], ch.edge, x)
} else {
calc.Like(c(dates[ch], x), c(ch.edge, p.edge), c(rep(x, length(dates[ch])), dates[p]))
})
}
solve.lin <- function(bounds, ch.times, ch.edge) {
y <- (mu[ch.edge] * ch.times - t$edge.length[ch.edge]) / mu[ch.edge]
x <- c(bounds[1] + opt.tol, bounds[2] - opt.tol)
if (bounds[1] < y && y < bounds[2])
x <- c(x, y)
x[which.max(unlist(lapply(x, function(y) sum(calc.Like(ch.times, ch.edge, y)))))]
}
solve.poly2 <- function(bounds, a, b, c.0) {
x <- c(bounds[1] + opt.tol, bounds[2] - opt.tol)
if (b ^ 2 - 4 * a * c.0 >= 0) {
if (a == 0) {
y <- -c.0 / b
if (bounds[1] < y && y < bounds[2])
x <- c(x, y)
} else {
x.1 <- (-b + sqrt(b ^ 2 - 4 * a * c.0)) / (2 * a)
x.2 <- (-b - sqrt(b ^ 2 - 4 * a * c.0)) / (2 * a)
if (bounds[1] < x.1 && x.1 < bounds[2])
x <- c(x, x.1)
if (bounds[1] < x.2 && x.2 < bounds[2])
x <- c(x, x.2)
}
}
x
}
solve.bin <- function(bounds, ch.times, ch.edge) {
ch.edge.length <- t$edge.length[ch.edge]
a <- sum(mu[ch.edge])
b <- ch.edge.length[1] + ch.edge.length[2] - a * (ch.times[1] + ch.times[2])
c.0 <- a*ch.times[1] * ch.times[2] - ch.times[1] * ch.edge.length[2] - ch.times[2] * ch.edge.length[1]
x <- solve.poly2(bounds, a, b, c.0)
x[which.max(unlist(lapply(x, function(y) sum(calc.Like(ch.times, ch.edge, y)))))]
}
solve.bin2 <- function(bounds, ch.times, ch.edge, par.time, par.edge) {
ch.edge.length <- t$edge.length[ch.edge]
par.edge.length <- t$edge.length[par.edge]
a <- mu[ch.edge] - mu[par.edge]
b <- ch.edge.length + par.edge.length - a * (ch.times + par.time)
c.0 <- a*ch.times * par.time - ch.times * par.edge.length - par.time * ch.edge.length
cat(sprintf("a: %f, b: %f, c: %f\n", a, b, c.0))
x <- solve.poly2(bounds, a, b, c.0)
x[which.max(unlist(lapply(x, function(y) sum(calc.Like(c(ch.times, y), c(ch.edge, par.edge), c(y, par.time))))))]
}
solve.poly3 <- function(bounds, a, b, c.0, d) {
x <- c(bounds[1] + opt.tol, bounds[2] - opt.tol)
if (a == 0)
x <- c(x, solve.poly2(bounds, b, c.0, d))
else {
delta.0 <- complex(real=b^2 - 3 * a * c.0)
delta.1 <- complex(real=2 * b^3 - 9 * a * b * c.0 + 27 * a^2 * d)
C <- ((delta.1 + sqrt(delta.1^2 - 4 * delta.0^3)) / 2)^(1/3)
x.1 <- Re(-1 / (3 * a) * (b + complex(real=1) * C + delta.0 / (complex(real=1) * C)))
x.2 <- Re(-1 / (3 * a) * (b + complex(real=-1/2, imaginary=sqrt(3)/2) * C + delta.0 / (complex(real=-1/2, imaginary=sqrt(3)/2) * C)))
x.3 <- Re(-1 / (3 * a) * (b + complex(real=-1/2, imaginary=-sqrt(3)/2) * C + delta.0 / (complex(real=-1/2, imaginary=-sqrt(3)/2) * C)))
if (bounds[1] < x.1 && x.1 < bounds[2])
x <- c(x, x.1)
if (bounds[1] < x.2 && x.2 < bounds[2])
x <- c(x, x.2)
if (bounds[1] < x.3 && x.3 < bounds[2])
x <- c(x, x.3)
}
x
}
solve.cube <- function(bounds, ch.times, ch.edge, par.time, par.edge) {
ch.edge.length <- t$edge.length[ch.edge]
par.edge.length <- t$edge.length[par.edge]
a <- sum(mu[ch.edge]) - mu[par.edge]
b <- sum(ch.edge.length) + par.edge.length - a * (sum(ch.times) + par.time)
c.0 <- a * (ch.times[1] * ch.times[2] + ch.times[1] * par.time + ch.times[2] * par.time) - (ch.times[1] + ch.times[2]) * par.edge.length - (ch.times[1] + par.time) * ch.edge.length[2] - (ch.times[2] + par.time) * ch.edge.length[1]
d <- ch.edge.length[1] * ch.times[2] * par.time + ch.edge.length[2] * ch.times[1] * par.time + par.edge.length * ch.times[1] * ch.times[2] - a * prod(ch.times) * par.time
x <- solve.poly3(bounds, a, b, c.0, d)
x[which.max(unlist(lapply(x, function(y) sum(calc.Like(c(ch.times, y), c(ch.edge, par.edge), c(y, y, par.time))))))]
}
estimate <- function(node) {
ch.edge <- children[[node]]
ch <- t$edge[ch.edge, 2]
p.edge <- parent[[node]]
p <- t$edge[p.edge, 1]
m <- if (length(p) == 0 || is.na(dates[p])) {
min.date
} else {
dates[p]
}
if (is.binary) {
if (m + 2 * opt.tol >= min(dates[ch])) {
mean(c(m, min(dates[ch])))
} else if (length(dates[p]) == 0 || is.na(dates[p])) {
if (length(ch.edge) == 2)
solve.bin(c(m, min(dates[ch])), dates[ch], ch.edge)
else
solve.lin(c(m, min(dates[ch])), dates[ch], ch.edge)
} else {
if (length(ch.edge) == 2)
solve.cube(c(m, min(dates[ch])), dates[ch], ch.edge, dates[p], p.edge)
else
solve.bin2(c(m, min(dates[ch])), dates[ch], ch.edge, dates[p], p.edge)
}
} else {
res <- suppressWarnings(optimize(opt.fun, c(m, min(dates[ch])), ch, p, ch.edge, p.edge, maximum=T))
res$maximum
}
}
# iterate to estimate dates
lik <- NA
repeat
{
for (n in nodes) {
dates[n + n.tips] <- estimate(n)
}
all.lik <- calc.Like(dates[t$edge[,2]], 1:length(t$edge.length), dates[t$edge[,1]]) + scale.lik
new.lik <- sum(all.lik)
if (show.steps > 0 && ((iter.step %% show.steps) == 0)) {
cat(paste("Step: ", iter.step, ", Likelihood: ", new.lik, "\n", sep=""))
}
if ((lik.tol > 0 && (!is.na(lik) && (is.infinite(lik) || is.infinite(new.lik) || new.lik - lik < lik.tol))) || (nsteps > 0 && iter.step >= nsteps) || (lik.tol <= 0 && nsteps <= 0)) {
if (is.infinite(lik) || is.infinite(new.lik)) {
warning("Likelihood infinite")
}
else if (!is.na(lik) && new.lik + lik.sens < lik) {
warning("Likelihood less than previous estimate")
}
break
} else {
lik <- new.lik
}
iter.step <- iter.step + 1
}
if (show.steps > 0) {
cat(paste("Step: ", iter.step, ", Likelihood: ", new.lik, "\n", sep=""))
}
dates
}
|