File: node.dating.R

package info (click to toggle)
r-cran-ape 5.8-1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,676 kB
  • sloc: ansic: 7,676; cpp: 116; sh: 17; makefile: 2
file content (327 lines) | stat: -rw-r--r-- 11,629 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
## node.dating.R (2021-03-03)
## This file is part of the R-package `ape'.
## See the file COPYING in the package ape available at cran.r-project.org for licensing issues.

# Copyright (c) 2016, Bradley R. Jones, BC Centre for Excellence in HIV/AIDS
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
#     * Redistributions of source code must retain the above copyright
#       notice, this list of conditions and the following disclaimer.
#     * Redistributions in binary form must reproduce the above copyright
#       notice, this list of conditions and the following disclaimer in the
#       documentation and/or other materials provided with the distribution.
#     * Neither the name of the BC Centre for Excellence in HIV/AIDS nor the
#       names of its contributors may be used to endorse or promote products
#       derived from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
# ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
# WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
# DISCLAIMED. IN NO EVENT SHALL The BC Centre for Excellence in HIV/AIDS BE LIABLE FOR ANY
# DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
# (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
# ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
# SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

# Estimate the mutation rate and node dates based on tip dates.
#
# Felsenstein, Joseph. "Evolutionary trees from DNA sequences: A maximum
# likelihood approach." Journal of Molecular Evolution 17 (1981):368-376.
#
# Rambaut, Andrew. "Estimating the rate of molecular evolution: incorporating
# non-contemporaneous sequences into maximum likelihood phylogenies."
# Bioinformatics 16.4 (2000): 395-399.

# Estimate the mutation rate of a phylogenetic tree from the tip dates using
# linear regression. This model assumes that the tree follows a molecular
# clock.
#
# t: rooted tree with edge lengths equal to genetic distance
#
# tip.dates: vector of dates for the tips, in the same order as t$tip.label.
#            Tip dates can be censored with NA values
#
# p: p-value cutoff for failed regression (default=0.05)
#
# returns the mutation rate as a double
estimate.mu <- function(t, node.dates, p.tol=0.05) {
	# fit linear model
	g <- glm(node.depth.edgelength(t)[1:length(node.dates)] ~ node.dates, na.action=na.omit)
	p <- anova(g, test="Chisq")[2,5]

	# test fit
	if (p > p.tol) {
		warning(paste("Cannot reject null hypothesis (p=", p, ")"))
	}

	coef(g)[[2]]
}

# Estimate the dates of the internal nodes of a phylogenetic tree.
#
# t: rooted tree with edge lengths equal to genetic distance
#
# node.dates: either a vector of dates for the tips, in the same order as
#             t$tip.label; or a vector of dates to initalize each node
#
# mu: mutation rate, either a vector of size one for a strict molecular clock
#     or a vector with a local molecular clock along each edge
#
# min.date: the minimum date that a node can have (needed for optimize()). The
#           default is -.Machine$double.xmax
#
# show.steps: set to print the log likelihood every show.steps. Set to 0 to
#             supress output
#
# opt.tol: tolerance for optimization precision. By default, the optimize()
#          function uses a tolerance of .Machine$double.eps^0.25 (see ?optimize)
#
# lik.tol: tolerance for likelihood comparison. estimate.dates will stop when
#          the log likelihood between successive trees is less than like.tol. If
#          0 will stop after nsteps steps.
#
# nsteps: the maximum number of steps to run. If 0 will run until the log
#         likelihood between successive runs is less than lik.tol. The default
#         is 1000.
#
# is.binary: if the phylogentic tree is binary, setting is.binary to TRUE, will
#            run a optimization method
#
# If lik.tol and nsteps are both 0 then estimate.dates will only run the inital
# step.
#
# returns a vector of the estimated dates of the tips and internal nodes
estimate.dates <- function(t, node.dates, mu = estimate.mu(t, node.dates), min.date = -.Machine$double.xmax, show.steps = 0, opt.tol = 1e-8, nsteps = 1000, lik.tol = 0, is.binary = is.binary.phylo(t)) {

	# check parameters
	if (any(mu < 0))
		stop(paste("mu (", mu, ") less than 0", sep=""))

	# init vars
	mu <- if (length(mu) == 1) rep(mu, length(t$edge.length)) else mu
	n.tips <- length(t$tip.label)
	dates <- if (length(node.dates) == n.tips) {
			c(node.dates, rep(NA, t$Nnode))
		} else if (length(node.dates) == n.tips + t$Nnode) {
			node.dates
		} else {
			stop(paste0("node.dates must be a vector with length equal to the number of tips or equal to the number of nodes plus the number of tips"))
		}

	lik.sens <- if (lik.tol == 0) opt.tol else lik.tol

	# Don't count initial step if all values are seeded
	iter.step <-  if (any(is.na(dates))) 0 else 1

	children <- lapply(1:t$Nnode,
		function(x) {
			which(t$edge[,1] == x + n.tips)
		})
	parent <- lapply(1:t$Nnode,
		function(x) {
			which(t$edge[,2] == x + n.tips)
		})

	# to process children before parents
	nodes <- c(1)
	for (i in 1:t$Nnode) {
		to.add <- t$edge[children[[nodes[i]]], 2] - n.tips

		nodes <- c(nodes, to.add[to.add > 0])

		i <- i + 1
	}
	nodes <- rev(nodes)

	# calculate likelihood functions
	scale.lik <- sum(-lgamma(t$edge.length+1)+(t$edge.length+1)*log(mu))

	calc.Like <- function(ch.node, ch.edge, x) {
		tim <- ch.node - x

		t$edge.length[ch.edge]*log(tim)-mu[ch.edge]*tim
	}

	opt.fun <- function(x, ch, p, ch.edge, p.edge, use.parent=T) {


		sum(if (!use.parent || length(dates[p]) == 0 || is.na(dates[p])) {
				calc.Like(dates[ch], ch.edge, x)
			} else {
				calc.Like(c(dates[ch], x), c(ch.edge, p.edge), c(rep(x, length(dates[ch])), dates[p]))
			})
	}

	solve.lin <- function(bounds, ch.times, ch.edge) {
		y <- (mu[ch.edge] * ch.times - t$edge.length[ch.edge]) / mu[ch.edge]
		x <- c(bounds[1] + opt.tol, bounds[2] - opt.tol)
		if (bounds[1] < y && y < bounds[2])
			x <- c(x, y)

		x[which.max(unlist(lapply(x, function(y) sum(calc.Like(ch.times, ch.edge, y)))))]
	}

	solve.poly2 <- function(bounds, a, b, c.0) {
		x <- c(bounds[1] + opt.tol, bounds[2] - opt.tol)

		if (b ^ 2 - 4 * a * c.0 >= 0) {
			if (a == 0) {
				y <- -c.0 / b

				if (bounds[1] < y && y < bounds[2])
					x <- c(x, y)
			} else {
				x.1 <- (-b + sqrt(b ^ 2 - 4 * a * c.0)) / (2 * a)
				x.2 <- (-b - sqrt(b ^ 2 - 4 * a * c.0)) / (2 * a)

				if (bounds[1] < x.1 && x.1 < bounds[2])
					x <- c(x, x.1)
				if (bounds[1] < x.2 && x.2 < bounds[2])
					x <- c(x, x.2)
			}
		}

		x
	}

	solve.bin <- function(bounds, ch.times, ch.edge) {
		ch.edge.length <- t$edge.length[ch.edge]
		a <- sum(mu[ch.edge])
		b <- ch.edge.length[1] + ch.edge.length[2] - a * (ch.times[1] + ch.times[2])
		c.0 <- a*ch.times[1] * ch.times[2] - ch.times[1] * ch.edge.length[2] - ch.times[2] * ch.edge.length[1]

		x <- solve.poly2(bounds, a, b, c.0)

		x[which.max(unlist(lapply(x, function(y) sum(calc.Like(ch.times, ch.edge, y)))))]
	}


	solve.bin2 <- function(bounds, ch.times, ch.edge, par.time, par.edge) {
		ch.edge.length <- t$edge.length[ch.edge]
		par.edge.length <- t$edge.length[par.edge]
		a <- mu[ch.edge] - mu[par.edge]
		b <- ch.edge.length + par.edge.length - a * (ch.times + par.time)
		c.0 <- a*ch.times * par.time - ch.times * par.edge.length - par.time * ch.edge.length

		cat(sprintf("a: %f, b: %f, c: %f\n", a, b, c.0))

		x <- solve.poly2(bounds, a, b, c.0)

		x[which.max(unlist(lapply(x, function(y) sum(calc.Like(c(ch.times, y), c(ch.edge, par.edge), c(y, par.time))))))]
	}

	solve.poly3 <- function(bounds, a, b, c.0, d) {
		x <- c(bounds[1] + opt.tol, bounds[2] - opt.tol)

		if (a == 0)
			x <- c(x, solve.poly2(bounds, b, c.0, d))
		else {
			delta.0 <- complex(real=b^2 - 3 * a * c.0)
			delta.1 <- complex(real=2 * b^3 - 9 * a * b * c.0 + 27 * a^2 * d)
			C <- ((delta.1 + sqrt(delta.1^2 - 4 * delta.0^3)) / 2)^(1/3)

			x.1 <- Re(-1 / (3 * a) * (b + complex(real=1) * C + delta.0 / (complex(real=1) * C)))
			x.2 <- Re(-1 / (3 * a) * (b + complex(real=-1/2, imaginary=sqrt(3)/2) * C + delta.0 / (complex(real=-1/2, imaginary=sqrt(3)/2) * C)))
			x.3 <- Re(-1 / (3 * a) * (b + complex(real=-1/2, imaginary=-sqrt(3)/2) * C + delta.0 / (complex(real=-1/2, imaginary=-sqrt(3)/2) * C)))

			if (bounds[1] < x.1 && x.1 < bounds[2])
				x <- c(x, x.1)
			if (bounds[1] < x.2 && x.2 < bounds[2])
				x <- c(x, x.2)
			if (bounds[1] < x.3 && x.3 < bounds[2])
				x <- c(x, x.3)
		}

		x
	}

	solve.cube <- function(bounds, ch.times, ch.edge, par.time, par.edge) {
		ch.edge.length <- t$edge.length[ch.edge]
		par.edge.length <- t$edge.length[par.edge]

		a <- sum(mu[ch.edge]) - mu[par.edge]
		b <- sum(ch.edge.length) + par.edge.length - a * (sum(ch.times) + par.time)
		c.0 <- a * (ch.times[1] * ch.times[2] + ch.times[1] * par.time + ch.times[2] * par.time) - (ch.times[1] + ch.times[2]) * par.edge.length - (ch.times[1] + par.time) * ch.edge.length[2] - (ch.times[2] + par.time) * ch.edge.length[1]
		d <- ch.edge.length[1] * ch.times[2] * par.time + ch.edge.length[2] * ch.times[1] * par.time + par.edge.length * ch.times[1] * ch.times[2] - a * prod(ch.times) * par.time

		x <- solve.poly3(bounds, a, b, c.0, d)

		x[which.max(unlist(lapply(x, function(y) sum(calc.Like(c(ch.times, y), c(ch.edge, par.edge), c(y, y, par.time))))))]
	}

	estimate <- function(node) {
		ch.edge <- children[[node]]
		ch <- t$edge[ch.edge, 2]

		p.edge <- parent[[node]]
		p <- t$edge[p.edge, 1]

		m <- if (length(p) == 0 || is.na(dates[p])) {
				min.date
			} else {
				dates[p]
			}

		if (is.binary) {
			if (m + 2 * opt.tol >= min(dates[ch])) {
				mean(c(m, min(dates[ch])))
			} else if (length(dates[p]) == 0 || is.na(dates[p])) {
				if (length(ch.edge) == 2)
					solve.bin(c(m, min(dates[ch])), dates[ch], ch.edge)
				else
					solve.lin(c(m, min(dates[ch])), dates[ch], ch.edge)
			} else {
				if (length(ch.edge) == 2)
					solve.cube(c(m, min(dates[ch])), dates[ch], ch.edge, dates[p], p.edge)
				else
					solve.bin2(c(m, min(dates[ch])), dates[ch], ch.edge, dates[p], p.edge)
			}
		} else {
		  res <- suppressWarnings(optimize(opt.fun, c(m, min(dates[ch])), ch, p, ch.edge, p.edge, maximum=T))

			res$maximum
		}
	}

	# iterate to estimate dates
	lik <- NA

	repeat
	{
		for (n in nodes) {
			dates[n + n.tips] <- estimate(n)
		}

		all.lik <- 	calc.Like(dates[t$edge[,2]], 1:length(t$edge.length), dates[t$edge[,1]]) + scale.lik
		new.lik <- sum(all.lik)

		if (show.steps > 0 && ((iter.step %% show.steps) == 0)) {
			cat(paste("Step: ", iter.step, ", Likelihood: ", new.lik, "\n", sep=""))
		}

		if ((lik.tol > 0 && (!is.na(lik) && (is.infinite(lik) || is.infinite(new.lik) || new.lik - lik < lik.tol))) || (nsteps > 0 && iter.step >= nsteps) || (lik.tol <= 0 && nsteps <= 0)) {
			if (is.infinite(lik) || is.infinite(new.lik)) {
				warning("Likelihood infinite")
			}
			else if (!is.na(lik) && new.lik + lik.sens < lik) {
				warning("Likelihood less than previous estimate")
			}

			break
		} else {
			lik <- new.lik
		}

		iter.step <- iter.step + 1
	}

	if (show.steps > 0) {
		cat(paste("Step: ", iter.step, ", Likelihood: ", new.lik, "\n", sep=""))
	}

	dates
}