1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180
|
pcoa <- function(D, correction="none", rn=NULL)
#
# Principal coordinate analysis (PCoA) of a square distance matrix D
# with correction for negative eigenvalues.
#
# References:
# Gower, J. C. 1966. Some distance properties of latent root and vector methods
# used in multivariate analysis. Biometrika. 53: 325-338.
# Gower, J. C. and P. Legendre. 1986. Metric and Euclidean properties of
# dissimilarity coefficients. J. Classif. 3: 5-48.
# Legendre, P. and L. Legendre. 1998. Numerical ecology, 2nd English edition.
# Elsevier Science BV, Amsterdam. [PCoA: Section 9.2]
#
# Pierre Legendre, October 2007
{
centre <- function(D,n)
# Centre a square matrix D by matrix algebra
# mat.cen = (I - 11'/n) D (I - 11'/n)
{ One <- matrix(1,n,n)
mat <- diag(n) - One/n
mat.cen <- mat %*% D %*% mat
lowtri <- lower.tri(mat.cen)
mat.cen[lowtri] <- t(mat.cen)[lowtri]
mat.cen
}
bstick.def <- function (n, tot.var = 1, ...) # 'bstick.default' from vegan
{
res <- rev(cumsum(tot.var/n:1)/n)
names(res) <- paste("Stick", seq(len = n), sep = "")
return(res)
}
# ===== The PCoA function begins here =====
# Preliminary actions
D <- as.matrix(D)
n <- nrow(D)
epsilon <- sqrt(.Machine$double.eps)
if(length(rn)!=0) {
names <- rn
} else {
names <- rownames(D)
}
CORRECTIONS <- c("none","lingoes","cailliez")
correct <- pmatch(correction, CORRECTIONS)
if(is.na(correct)) stop("Invalid correction method")
# cat("Correction method =",correct,'\n')
# Gower centring of matrix D
# delta1 = (I - 11'/n) [-0.5 d^2] (I - 11'/n)
delta1 <- centre((-0.5*D^2),n)
trace <- sum(diag(delta1))
# Eigenvalue decomposition
D.eig <- eigen(delta1)
# Negative eigenvalues?
min.eig <- min(D.eig$values)
zero.eig <- which(abs(D.eig$values) < epsilon)
D.eig$values[zero.eig] <- 0
# No negative eigenvalue
if(min.eig > -epsilon) { # Curly 1
correct <- 1
eig <- D.eig$values
k <- length(which(eig > epsilon))
rel.eig <- eig[1:k]/trace
cum.eig <- cumsum(rel.eig)
vectors <- sweep(D.eig$vectors[,1:k, drop = FALSE], 2, sqrt(eig[1:k]), FUN="*")
bs <- bstick.def(k)
cum.bs <- cumsum(bs)
res <- data.frame(eig[1:k], rel.eig, bs, cum.eig, cum.bs)
colnames(res) <- c("Eigenvalues","Relative_eig","Broken_stick","Cumul_eig","Cumul_br_stick")
rownames(res) <- 1:nrow(res)
rownames(vectors) <- names
colnames(vectors) <- colnames(vectors, do.NULL = FALSE, prefix = "Axis.")
note <- paste("There were no negative eigenvalues. No correction was applied")
out <- (list(correction=c(correction,correct), note=note, values=res, vectors=vectors, trace=trace))
# Negative eigenvalues present
} else { # Curly 1
k <- n
eig <- D.eig$values
rel.eig <- eig/trace
rel.eig.cor <- (eig - min.eig)/(trace - (n-1)*min.eig) # Eq. 9.27 for a single dimension
if (length(zero.eig)) # by Jesse Connell
rel.eig.cor <- c(rel.eig.cor[-zero.eig[1]], 0)
## the previous line replaces:
## rel.eig.cor = c(rel.eig.cor[1:(zero.eig[1]-1)], rel.eig.cor[(zero.eig[1]+1):n], 0)
cum.eig.cor <- cumsum(rel.eig.cor)
k2 <- length(which(eig > epsilon))
k3 <- length(which(rel.eig.cor > epsilon))
vectors <- sweep(D.eig$vectors[, 1:k2, drop = FALSE], 2, sqrt(eig[1:k2]), FUN="*")
# Only the eigenvectors with positive eigenvalues are shown
# Negative eigenvalues: three ways of handling the situation
if((correct==2) | (correct==3)) { # Curly 2
if(correct == 2) { # Curly 3
# Lingoes correction: compute c1, then the corrected D
c1 <- -min.eig
note <- paste("Lingoes correction applied to negative eigenvalues: D' = -0.5*D^2 -",c1,", except diagonal elements")
D <- -0.5*(D^2 + 2*c1)
# Cailliez correction: compute c2, then the corrected D
} else if(correct == 3) {
delta2 <- centre((-0.5*D),n)
upper <- cbind(matrix(0,n,n), 2*delta1)
lower <- cbind(-diag(n), -4*delta2)
sp.matrix <- rbind(upper, lower)
c2 <- max(Re(eigen(sp.matrix, symmetric=FALSE, only.values=TRUE)$values))
note <- paste("Cailliez correction applied to negative eigenvalues: D' = -0.5*(D +",c2,")^2, except diagonal elements")
D <- -0.5*(D + c2)^2
} # End curly 3
diag(D) <- 0
mat.cor <- centre(D,n)
toto.cor <- eigen(mat.cor)
trace.cor <- sum(diag(mat.cor))
# Negative eigenvalues present?
min.eig.cor <- min(toto.cor$values)
zero.eig.cor <- which((toto.cor$values < epsilon) & (toto.cor$values > -epsilon))
toto.cor$values[zero.eig.cor] <- 0
# No negative eigenvalue after correction: result OK
if(min.eig.cor > -epsilon) { # Curly 4
eig.cor <- toto.cor$values
rel.eig.cor <- eig.cor[1:k]/trace.cor
cum.eig.cor <- cumsum(rel.eig.cor)
k2 <- length(which(eig.cor > epsilon))
vectors.cor <- sweep(toto.cor$vectors[, 1:k2, drop = FALSE], 2, sqrt(eig.cor[1:k2]), FUN="*")
rownames(vectors.cor) <- names
colnames(vectors.cor) <- colnames(vectors.cor, do.NULL = FALSE, prefix = "Axis.")
# bs <- broken.stick(k2)[,2]
bs <- bstick.def(k2)
bs <- c(bs, rep(0,(k-k2)))
cum.bs <- cumsum(bs)
# Negative eigenvalues still present after correction: incorrect result
} else {
if(correct == 2) cat("Problem! Negative eigenvalues are still present after Lingoes",'\n')
if(correct == 3) cat("Problem! Negative eigenvalues are still present after Cailliez",'\n')
rel.eig.cor <- cum.eig.cor <- bs <- cum.bs <- rep(NA,n)
vectors.cor <- matrix(NA,n,2)
rownames(vectors.cor) <- names
colnames(vectors.cor) <- colnames(vectors.cor, do.NULL = FALSE, prefix = "Axis.")
} # End curly 4
res <- data.frame(eig[1:k], eig.cor[1:k], rel.eig.cor, bs, cum.eig.cor, cum.bs)
colnames(res) <- c("Eigenvalues", "Corr_eig", "Rel_corr_eig", "Broken_stick", "Cum_corr_eig", "Cum_br_stick")
rownames(res) <- 1:nrow(res)
rownames(vectors) <- names
colnames(vectors) <- colnames(vectors, do.NULL = FALSE, prefix = "Axis.")
out <- (list(correction=c(correction,correct), note=note, values=res, vectors=vectors, trace=trace, vectors.cor=vectors.cor, trace.cor=trace.cor))
} else { # Curly 2
note <- "No correction was applied to the negative eigenvalues"
bs <- bstick.def(k3)
bs <- c(bs, rep(0,(k-k3)))
cum.bs <- cumsum(bs)
res <- data.frame(eig[1:k], rel.eig, rel.eig.cor, bs, cum.eig.cor, cum.bs)
colnames(res) <- c("Eigenvalues","Relative_eig","Rel_corr_eig","Broken_stick","Cum_corr_eig","Cumul_br_stick")
rownames(res) <- 1:nrow(res)
rownames(vectors) <- names
colnames(vectors) <- colnames(vectors, do.NULL = FALSE, prefix = "Axis.")
out <- (list(correction=c(correction,correct), note=note, values=res, vectors=vectors, trace=trace))
} # End curly 2: three ways of handling the situation
} # End curly 1
class(out) <- "pcoa"
out
} # End of PCoA
|