1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268
|
/* bitsplits.c 2024-01-13 */
/* Copyright 2005-2024 Emmanuel Paradis */
/* This file is part of the R-package `ape'. */
/* See the file ../COPYING for licensing issues. */
#include "ape.h"
#include <stdint.h>
/* the following array stores the 8 mask values:
[0] = 0000 0001
[1] = 1000 0000
[2] = 0100 0000
[3] = 0010 0000
[4] = 0001 0000
[5] = 0000 1000
[6] = 0000 0100
[7] = 0000 0010
so that mask81[y % 8] gives the corresponding mask (note that 8 % 8 is 0) */
static const unsigned char mask81[8] = {0x01, 0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02};
void OneWiseBitsplits(unsigned char *mat, int nr, int nc, int rest)
{
/* the following array stores the 8 mask values:
[0] = 0000 0000
[1] = 1000 0000
[2] = 1100 0000
[3] = 1110 0000
[4] = 1111 0000
[5] = 1111 1000
[6] = 1111 1100
[7] = 1111 1110
to set the trailing bits to zero when appropriate */
const unsigned char trailzeros[8] = {0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe};
int i, j;
for (i = 0; i < nc; i++) {
j = nr * i;
if (mat[j] & mask81[1]) continue;
while (j < nr * (i + 1)) {
mat[j] = ~mat[j];
j++;
}
if (rest) mat[j - 1] &= trailzeros[rest];
}
}
static int iii;
void bar_reorder2(int node, int n, int m, int Nedge, int *e, int *neworder, int *L, int *pos)
{
int i = node - n - 1, j, k;
for (j = pos[i] - 1; j >= 0; j--)
neworder[iii--] = L[i + m * j] + 1;
for (j = 0; j < pos[i]; j++) {
k = e[L[i + m * j] + Nedge];
if (k > n)
bar_reorder2(k, n, m, Nedge, e, neworder, L, pos);
}
}
#define update_L(x)\
k = e_reord[i] - Ntip - 1;\
L[k + Nnode * pos[k]] = x;\
pos[k]++
SEXP bitsplits_multiPhylo(SEXP x, SEXP n, SEXP nr)
{
int Ntip, Nnode, Nr, Ntrees, itr, Nc, *e, *e_reord, Nedge, *L, *pos, i, j, k, ispl, *newor, d, inod, y, *rfreq, new_split, mat_full = 0, size_L, N_stored_splits;
unsigned char *split, *rmat;
SEXP mat, freq, ans, EDGE, final_nc;
PROTECT(x = coerceVector(x, VECSXP));
PROTECT(n = coerceVector(n, INTSXP)); /* nb of tips */
PROTECT(nr = coerceVector(nr, INTSXP)); /* nb of rows in the matrix of splits */
Ntrees = LENGTH(x);
Ntip = *INTEGER(n);
Nr = *INTEGER(nr);
Nc = (Ntip - 3) * Ntrees; /* the maximum number of splits that can be found */
if ((double) Nr * Nc > INT32_MAX) Nc = (int) trunc(INT32_MAX / Nr);
PROTECT(mat = allocVector(RAWSXP, Nr * Nc));
PROTECT(freq = allocVector(INTSXP, Nc));
rmat = RAW(mat);
rfreq = INTEGER(freq);
memset(rmat, 0, Nr * Nc * sizeof(unsigned char));
split = (unsigned char*)R_alloc(Nr, sizeof(unsigned char));
ispl = 0; /* nb of splits already stored */
for (itr = 0; itr < Ntrees; itr++) {
Nnode = *INTEGER(getListElement(VECTOR_ELT(x, itr), "Nnode"));
if (Nnode == 1) continue;
PROTECT(EDGE = getListElement(VECTOR_ELT(x, itr), "edge"));
e = INTEGER(EDGE);
Nedge = LENGTH(EDGE)/2;
/* L is a 1-d array storing, for each node, the C indices of the rows of
the edge matrix where the node is ancestor (i.e., present in the 1st
column). It is used in the same way than a matrix (which is actually
a vector) is used in R as a 2-d structure. */
if (((double) Nnode * Ntip) > INT32_MAX)
error("the product Nnode (%d) by Ntip (%d) is greater than %d", Nnode, Ntip, INT32_MAX);
size_L = Nnode * Ntip;
L = (int*)R_alloc(size_L, sizeof(int)); /* safe allocation */
/* pos gives the position for each 'row' of L, that is the number of elements
which have already been stored for that 'row'. */
pos = (int*)R_alloc(Nnode, sizeof(int));
memset(pos, 0, Nnode * sizeof(int));
/* we now go down along the edge matrix */
for (i = 0; i < Nedge; i++) {
k = e[i] - Ntip - 1; /* k is the 'row' index in L corresponding to node e1[i] */
j = pos[k]; /* the current 'column' position corresponding to k */
pos[k]++; /* increment in case the same node is found in another row of the edge matrix */
L[k + Nnode * j] = i;
}
/* L is now ready: we can start the recursive calls.
We start with the root 'n + 1': its index will be changed into
the corresponding C index inside the recursive function. */
iii = Nedge - 1;
newor = (int*)R_alloc(Nedge, sizeof(int));
bar_reorder2(Ntip + 1, Ntip, Nnode, Nedge, e, newor, L, pos);
e_reord = (int*)R_alloc(2 * Nedge, sizeof(int));
for (i = 0; i < Nedge; i++) newor[i]--; /* change R indices into C indices */
for (i = 0; i < Nedge; i++) {
e_reord[i] = e[newor[i]];
e_reord[i + Nedge] = e[newor[i] + Nedge];
}
/* the tree is now reordered */
/* reallocate L and reinitialize pos */
L = (int*)R_alloc(size_L, sizeof(int));
memset(pos, 0, Nnode * sizeof(int));
for (i = 0; i < Nedge; i++) {
memset(split, 0, Nr * sizeof(unsigned char));
d = e_reord[i + Nedge];
if (d <= Ntip) { /* trivial split from a terminal branch */
update_L(d);
continue;
}
inod = d - Ntip - 1;
for (j = 0; j < pos[inod]; j++) {
y = L[inod + Nnode * j];
split[(y - 1) / 8] |= mask81[y % 8];
update_L(y); /* update L */
}
OneWiseBitsplits(split, Nr, 1, Ntip % 8);
new_split = 1;
if (itr > 0) { /* if we are handling the 1st tree, no need to check cause all splits are new */
j = 0; /* column of rmat */
k = 0; /* row */
y = 0; /* number of columns of rmat to shift */
while (j < N_stored_splits) {
if (split[k] != rmat[k + y]) { /* the two splits are different so move to the next col of rmat */
j++;
k = 0;
y += Nr;
} else k++;
if (k == Nr) { /* the two splits are the same, so stop here */
rfreq[j]++;
new_split = 0;
break;
}
}
}
if (new_split) {
memcpy(rmat + ispl * Nr, split, Nr);
/* for (j = 0; j < Nr; j++) rmat[j + ispl * Nr] = split[j]; */
rfreq[ispl] = 1;
ispl++;
if (ispl > Nc) {
mat_full = 1;
break;
}
}
}
N_stored_splits = ispl;
UNPROTECT(1);
if (mat_full) {
warning("allocated memory full: search for splits truncated");
break;
}
}
PROTECT(ans = allocVector(VECSXP, 3));
PROTECT(final_nc = allocVector(INTSXP, 1));
INTEGER(final_nc)[0] = ispl;
SET_VECTOR_ELT(ans, 0, mat);
SET_VECTOR_ELT(ans, 1, freq);
SET_VECTOR_ELT(ans, 2, final_nc);
UNPROTECT(7);
return ans;
}
int same_splits(unsigned char *x, unsigned char *y, int i, int j, int nr)
{
int end = i + nr;
while (i < end) {
if (x[i] != y[j]) return 0;
i++;
j++;
}
return 1;
}
SEXP CountBipartitionsFromSplits(SEXP split, SEXP SPLIT)
{
SEXP FREQ, ans;
unsigned char *mat, *MAT;
int i, j, nc, NC, nr, *p, *F;
PROTECT(split = coerceVector(split, VECSXP));
PROTECT(SPLIT = coerceVector(SPLIT, VECSXP));
mat = RAW(getListElement(split, "matsplit"));
MAT = RAW(getListElement(SPLIT, "matsplit"));
/* the number of splits in the 1st object: */
nc = LENGTH(getListElement(split, "freq"));
/* the split frequencies in the 2nd object: */
PROTECT(FREQ = getListElement(SPLIT, "freq"));
F = INTEGER(FREQ);
/* the number of splits in the 2nd object: */
NC = LENGTH(FREQ);
/* the number of rows in the matrix (should be the same in both objects): */
nr = nrows(getListElement(split, "matsplit"));
/* create the output */
PROTECT(ans = allocVector(INTSXP, nc));
p = INTEGER(ans);
memset(p, 0, nc * sizeof(int));
for (i = 0; i < nc; i++) {
j = 0;
while (j < NC) {
if (same_splits(mat, MAT, nr * i, nr * j, nr)) {
p[i] = F[j];
break;
}
j++;
}
}
UNPROTECT(4);
return ans;
}
|