1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346
|
#' Validating Data for Interpolation
#'
#' @description \code{ar_validate} executes a series of logic tests for \code{sf} object status,
#' shared coordinates between source and target data, appropriate project, and absence of
#' variable name conflicts.
#'
#' @usage ar_validate(source, target, varList, method = "aw", verbose = FALSE)
#'
#' @param source A \code{sf} object with data to be interpolated
#' @param target A \code{sf} object that data should be interpolated to
#' @param varList A vector of variable names to be added to the \code{target} object
#' @param method The areal interpolation method validation is being performed for. This
#' should be set to \code{"aw"}. Additional functionality will be added as the package
#' adds new interpolation techniques.
#' @param verbose A logical scalar; if \code{TRUE}, a tibble with test results is returned
#'
#' @return If \code{verbose} is \code{FALSE}, a logical scalar is returned that is \code{TRUE}
#' is all tests are passed and \code{FALSE} if one or more tests is failed. If \code{verbose}
#' is \code{TRUE}, a tibble with detailed test results is returned.
#'
#' @seealso \link{c}
#'
#' @examples
#' ar_validate(source = ar_stl_asthma, target = ar_stl_wards, varList = "ASTHMA")
#'
#' ar_validate(source = ar_stl_asthma, target = ar_stl_wards, varList = "ASTHMA", verbose = TRUE)
#'
#' @importFrom glue glue
#' @importFrom sf st_crs st_is_longlat
#'
#' @export
ar_validate <- function(source, target, varList, method = "aw", verbose = FALSE){
# check for missing parameters
if (missing(source)) {
stop("A sf object containing source data must be specified for the 'source' argument.")
}
if (missing(target)) {
stop("A sf object containing target data must be specified for the 'target' argument.")
}
if (missing(varList)) {
stop("A variable name or vector of variable names must be specified for the 'varList' argument.")
}
if (verbose != TRUE & verbose != FALSE){
stop("The 'verbose' argument must be either 'TRUE' or 'FALSE'.")
}
if (method != "aw"){
stop("The 'method' argument must be 'aw'.")
}
# store results from primary validate subfunctions
sf_result <- ar_validate_sf(source, target)
# execute additional tests if both are sf, otherwise set results to NA
if (sf_result == FALSE){
crs_result <- NA
longlat_result <- NA
polygon_result <- NA
vars_exist_result <- NA
vars_conflict_result <- NA
} else if (sf_result == TRUE){
# do both source and target have same CRS?
crs_result <- ar_validate_crs(source, target)
# are both source and target CRS values in planar?
longlat_result1 <- ar_validate_longlat(source)
longlat_result2 <- ar_validate_longlat(target)
longlat_result <- all(longlat_result1, longlat_result2)
# are both data sets polygon data?
polygon_result1 <- ar_validate_polygon(source)
polygon_result2 <- ar_validate_polygon(target)
polygon_result <- all(polygon_result1, polygon_result2)
# are there no conflicts with target variable names?
vars_conflict_result <- ar_validate_vars_conflict(target, varList = varList)
vars_exist_result <- ar_validate_vars_exist(source, varList = varList)
}
# determine if overall test is passed
if(sf_result == "TRUE" & crs_result == "TRUE" & longlat_result == "TRUE" &
polygon_result == "TRUE" &
vars_exist_result == "TRUE" & vars_conflict_result == "TRUE") {
result <- TRUE
} else {
result <- FALSE
}
# conditional code if verbose is assigned FALSE
if(verbose == FALSE){
out <- result
}
# conditional code if verbose is assigned TRUE
else if (verbose == TRUE){
table <- data.frame(
test = c("sf Objects", "CRS Match", "CRS is Planar", "Polygon Geometries",
"Variables Exist in Source", "No Variable Conflicts in Target",
"Overall Evaluation"),
result = c(sf_result, crs_result, longlat_result, polygon_result,
vars_exist_result, vars_conflict_result, result),
stringsAsFactors = FALSE)
out <- as_tibble(table)
}
# return output
return(out)
}
# Lite Version of Validation for aw_preview_weights
#
# @description \code{aw_validate_preview} is designed to be called by
# \code{aw_preview_weights} before the weights are calculated. It
# lacks the variable validation functionality of \code{ar_validate}.
#
# @param source A \code{sf} object with data to be interpolated
# @param target A \code{sf} object that data should be interpolated to
#
# @return If \code{verbose} is \code{FALSE}, a logical scalar is returned that is \code{TRUE}
# is all tests are passed and \code{FALSE} if one or more tests is failed. If \code{verbose}
# is \code{TRUE}, a tibble with detailed test results is returned.
#
aw_validate_preview <- function(source, target){
# store results from primary validate subfunctions
sf_result <- ar_validate_sf(source, target)
# execute additional tests if both are sf, otherwise set results to NA
if (sf_result == FALSE){
crs_result <- NA
longlat_result <- NA
polygon_result <- NA
} else if (sf_result == TRUE){
# do both source and target have same CRS?
crs_result <- ar_validate_crs(source, target)
# are both source and target CRS values in planar?
longlat_result1 <- ar_validate_longlat(source)
longlat_result2 <- ar_validate_longlat(target)
longlat_result <- all(longlat_result1, longlat_result2)
# are both data sets polygon data?
polygon_result1 <- ar_validate_polygon(source)
polygon_result2 <- ar_validate_polygon(target)
polygon_result <- all(polygon_result1, polygon_result2)
}
# determine if overall test is passed
if(sf_result == "TRUE" & crs_result == "TRUE" & longlat_result == "TRUE" &
polygon_result == "TRUE") {
out <- TRUE
} else {
out <- FALSE
}
# return output
return(out)
}
# Testing for sf object status for source and target data
#
# @description \code{ar_validate_sf} conducts a logic test for shared coordinate
# coordinate systems, which are a requirement for interpolation.
#
# @param source A \code{sf} object with data to be interpolated
# @param target A \code{sf} object that data should be interpolated to
#
# @return A logical scalar; if \code{TRUE}, the test is passed.
#
ar_validate_sf <- function(source, target){
# identify sf object in class
source_sf <- "sf" %in% class(source)
target_sf <- "sf" %in% class(target)
if(source_sf == TRUE & target_sf == TRUE){
# if both objects are sf
out <- TRUE
} else if(source_sf == FALSE | target_sf == FALSE){
# if one or both are not sf
out <- FALSE
}
# return result output
return(out)
}
# Testing for shared coordinates for source and target data
#
# @description \code{awrvalidate_crs} conducts a logic test for shared coordinate
# coordinate systems, which are a requirement for interpolation.
#
# @param source A \code{sf} object with data to be interpolated
# @param target A \code{sf} object that data should be interpolated to
#
# @return A logical scalar; if \code{TRUE}, the test is passed.
#
ar_validate_crs <- function(source, target){
if(sf::st_crs(source) == sf::st_crs(target)) {
# if both objects share crs
out <- TRUE
} else if(sf::st_crs(source) != sf::st_crs(target)) {
# if objects have different crs
out <- FALSE
}
# return result output
return(out)
}
# Testing for type of coordinates
#
# @description \code{ar_validate_longlat} conducts a logic test for
# whether or not the data are in planar format.
#
# @param .data A sf object
#
# @return A logical scalar; if \code{TRUE}, the test is passed
#
ar_validate_longlat <- function(.data){
result <- sf::st_is_longlat(.data)
if (result == TRUE){
# if object is in lat long
out <- FALSE
} else if (result == FALSE){
# if object is in planar
out <- TRUE
}
# return result output
return(out)
}
# Testing for Variable Conflicts in Target
#
# @description \code{ar_validate_vars_conflict} conducts a logic test for
# whether or not any of the variables to be created in the target
# data already exist as named columns.
#
# @param .data A sf object
# @param varList A vector of variables to be created
#
# @return A logical scalar; if \code{TRUE}, the test is passed
#
ar_validate_vars_conflict <- function(.data, varList){
# create logical vector
resultVector <- varList %in% colnames(.data)
result <- any(resultVector)
if (result == TRUE){
# if at least one variable name is in target
out <- FALSE
} else if (result == FALSE){
# if no existing variable names are in target
out <- TRUE
}
# return result output
return(out)
}
# Testing for Variables Existing in Source
#
# @description \code{ar_validate_vars_exist} conducts a logic test for
# whether or not all variables exist in the source data.
#
# @param .data A sf object
# @param varList A vector of variables assumed to exist.
#
# @return A logical scalar; if \code{TRUE}, the test is passed
#
ar_validate_vars_exist <- function(.data, varList){
# create logical vector
resultVector <- varList %in% colnames(.data)
out <- all(resultVector)
# return result output
return(out)
}
# Testing Geometry
ar_validate_polygon <- function(.data){
# create logical vector
out <- any(sf::st_geometry_type(.data) %in% c("POLYGON", "MULTIPOLYGON"))
# return result output
return(out)
}
|